Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Nature

Earth’s First Continents Sank Into The Planet Before Rising Up Again

September 20, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

A new examination of some of the oldest rocks in the world suggests that the first continents on Earth were unstable, and sank back into the mantle before making their way out again and reforming.

This could explain some of the more puzzling characteristics of cratons, extremely old and stable parts of the lithosphere (the crust and uppermost mantle) that have survived continental changes over eons and record Earth’s ancient history.

The new findings could help us understand Earth’s changing geology over its 4.5-billion-year lifespan.

“The rocks in the core of the continents, called cratons, are more than three billion years old,” explains geologist Fabio Capitanio of the Monash University School of Earth, Atmosphere and Environment in Australia.

“They formed in the early Earth and hold the secret to how continents and the planet changed over time.”

We don’t really know how the continents formed. No other planet in the Solar System has anything like them, so it seems clear that there must be a specific set of circumstances.

There are several lines of evidence that suggest the continents may have formed from the interior out, around cratonic cores. But the formation mechanism of the cratons themselves is hotly debated.

Cratons, of which around 35 are currently known, are buoyant and rigid compared to other parts of the lithosphere, which has given them their stability. But their composition is unusual compared to the more recent lithosphere, made up of a strangely diverse mix of materials, minerals with a range of ages, compositions, and sources.

This heterogeneity, or diversity, is suggestive of recycling and reworking, previous research has found.

Capitanio and his team conducted computational modeling to simulate the evolution of Earth during the first billion years of its existence, to observe the thermal and chemical evolution of the cratonic lithospheric mantle. In addition, they ran a set of test simulations to work out how sensitive their model was to different parameters.

The results showed that the first continental blocks to emerge on Earth were unstable, sinking back into the mantle. There, they melted and became mixed in with the molten material until dissolved.

However, some pieces can stay down there for a long time before floating back up, building up underneath the lithosphere in layers, giving it buoyancy and rigidity.

Because some of those older pieces of rock can stay in the mantle for long periods of time, this can explain the heterogeneity of the cratonic composition: older rocks from different places mixed in with younger rocks.

In fact, there could still be some of those pieces still down there, waiting to float back up.

The team has named this mechanism ‘massive regional relamination’ (MRR). Because it so neatly fits with the observed composition of cratons, the team says that it may have been a key component of continent formation on early Earth.

Given that continents are thought to be very important for the emergence and ongoing existence of life on Earth, figuring out how they formed has implications, not just for our own planet, but for the search for habitable worlds outside the Solar System.

“Our work is important in two ways,” Capitanio says.

“First, cratons are where important metals and other minerals are stored/found. And second, they tell us how the planets formed and changed in the past, including how the continents came to be and how they supported life, and how the atmosphere formed and changed as a result of the planets’ tectonics.”

The research has been published in PNAS.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
Incredible ‘Fairy’ Robot Sails on The Breeze Like a Floating Dandelion
Tiny Radioactive Object Goes Missing in Australia, Sparks Urgent Search
AI System Detects Strange Signals of Unknown Origin in Radio Data
A Mysterious Whirlpool Appeared Over Hawaii, And It Could Be Because of SpaceX

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • A Hidden Food Web Exists in The Desert, And It Thrives on Death
  • It’s Possible Neanderthals Evolved So They Wouldn’t Smell Their Own Stink, Study Finds
  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • Bar Graphs Induce a Hidden Bias in Interpretation, Experiment Shows
  • This Small Australian Marsupial Is Quite Literally Dying For Sex
  • ‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • An Incredible Thing Happens When Dolphins And Humans Team Up

Space

  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • Stunning Green Comet Will Be Closest to Earth Today, at Peak Brightness

Physics

  • A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
  • This Physicist Says Electrons Spin in Quantum Physics After All. Here’s Why
  • Physicists Break Record Firing a Laser Down Their University Corridor
  • Scientists Have Built a Macroscopic Tractor Beam Using Laser Light
  • Firing a Laser Into The Sky Can Divert Lightning, Experiment Shows

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • A Hidden Food Web Exists in The Desert, And It Thrives on Death
  • It’s Possible Neanderthals Evolved So They Wouldn’t Smell Their Own Stink, Study Finds
  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.