Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Nature

Fish ‘Look Down’ When They Swim, And We Finally Know Why

November 11, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

Some fish keep a close eye on the depths below while swimming, new research shows, for much the same reason we pay attention to where we’re putting our feet.

They aren’t taking steps, of course, but according to a new study, being biased to stimuli falling on the lower parts of the eye serves an important purpose for fish, helping them monitor their own motion in moving water.

To figure that out, researchers built a computational model that incorporates simulations of a zebrafish’s brain, native habitat, and swimming behavior.

Analysis of this model suggests constantly ‘looking down’ is an adaptive behavior for zebrafish, the researchers report. It may have evolved to help them stabilize themselves in a current.

Self-stabilizing can be hard in flowing water, and small fish often need to maneuver just to hold their position. This constant readjustment is informed partly by visual cues. If your background is moving, for example, it might be time to stabilize.

But those visual cues are tricky underwater. On land, we have lots of stationary objects like trees and buildings to help us gauge movement. Underwater, fish are surrounded by unreliable reference points, whose relative motion could be confusing.

“It’s similar to sitting on a train car that isn’t moving. If the train next to yours starts to pull to away from the station, it can trick you into thinking you are moving, too,” said lead author Emma Alexander, a computer scientist from Northwestern University.

“The visual cue from the other train is so strong that it overrides the fact that all of your other senses are telling you that you are sitting still. That’s exactly the same phenomenon that we are studying in fish. There are many misleading motion cues above them, but the most abundant and reliable signals are from the bottom of the river.”

The team studied zebrafish in the lab, using LEDs in their tanks to create moving patterns.

These fish don’t move their eyes to look around like we do. They don’t really need to, with their eyes already providing a sufficiently large field of vision. But they do start swimming when they see motion patterns below them, the study found.

“If you play a video with moving stripes, the fish will move along with the stripes,” Alexander said. “It’s like they are saying ‘wait for me!'”

frameborder=”0″ allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen>

The researchers also studied shallow streams in India where wild zebrafish live, since that scenery shaped the evolution of zebrafish behavior.

They placed 360-degree cameras in waterproof cases at seven streams, then remotely controlled a robotic arm to move the cameras, simulating the visual field of wild zebrafish.

“It allowed us to put our eyes where the fish eyes would be, so it’s seeing what the fish see,” Alexander said. “From the video data, we were able to model hypothetical scenarios where a simulated fish moved arbitrarily through a realistic environment.”

The researchers fed data from these experiments into algorithms for studying optic flow, or the apparent motion of scenery across the visual field. They found that, both in the lab and in the wild, zebrafish use information from their lower visual field to determine their motion.

“We tied everything together into a simulation that showed that, in fact, this is an adaptive behavior,” Alexander said.

This study focused on zebrafish, and while a similar model might apply to other shallow-water fish, we need more research to confirm that, Alexander explained to ScienceAlert. In other habitats this type of visual bias might not help at all.

“In deep ocean waters, a very different set of stimuli are available,” said Alexander, “and we expect this lower field bias would no longer be advantageous.”

Even in the same habitats, some fish may move or process visual information differently.

While this research is interesting, it could also have practical applications thanks to biomimicry, such as helping us develop better robots and artificial vision.

“If you were making a fish-inspired robot and you just looked at its anatomy, you might think ‘the eyes are pointing sideways, so I’m going to point my cameras sideways,'” Alexander said.

“But it turns out that the eyes are pointing sideways because they are balancing several tasks. We think they point sideways because it’s a compromise – they look upward to hunt and downward to swim.”

The study was published in Current Biology.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

This Incredible Dinosaur Had The Longest Neck Known to Science
AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
This Extremely Weird Galaxy Is Blasting Plasma at Its Friend
Octopus Farming Is Deeply Disturbing. A Professor Explains Why.
Mind-Bending Animation Shows How The Universe Would Look if We Could See Gamma Rays

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • Octopus Farming Is Deeply Disturbing. A Professor Explains Why.
  • Tasmanian Tiger ‘Probably’ Survived to 1980s or Even Later, Study Claims
  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • ‘Horrifying’ Plastic Rocks Emerge in Remote Island Paradise
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid

Space

  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized

Physics

  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics
  • ‘Time Reflections’ Finally Observed by Physicists After Decades of Searching

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • Octopus Farming Is Deeply Disturbing. A Professor Explains Why.
  • Tasmanian Tiger ‘Probably’ Survived to 1980s or Even Later, Study Claims
  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.