Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Nature

Glass Frogs Turn Transparent When They Sleep… By Hiding Almost All Their Blood

December 22, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

When you’re just a wee squishy frog trying to make your way in the wild jungles of Central and South America, you need to have some survival tricks up your clammy little sleeve.

Some frogs go on the offensive, striking out with powerful toxins. Others rely on quieter tactics – camouflage that helps them stay hidden from the eyes of voracious predators. For the Fleischmann’s glass frog (Hyalinobatrachium fleischmanni), living in the leafy treetops, that camouflage takes the form of transparency.

Typically nocturnal, the frogs limit the chances they’ll become lunch by creeping about at night under the cover of darkness. During the day it finds a nice leaf to curl up on, where the green pigmentation of its skin helps it blend into the background.

But a sleeping glass frog still faces plenty of risks in the daytime, risks that aren’t always easily mitigated by hiding beneath the foliage.

When sunlight streams down from above and penetrates a translucent leaf, a blobby little frog could form a clear frog-shaped silhouette that would stand out to hungry predators searching for a snack.

Glass frogs sleeping on a leaf
A group of glass frogs sleeping together on a leaf. (© Jesse Delia)

By having skin and flesh that lets significant amounts of sunlight pass through, Fleischmann’s glass frog can cast a less-obvious shadow as it sleeps.

A team of scientists led by biologist Carlos Taboada of Duke University noticed that these little amphibians have a really fascinating trick that boosts this act of self-preservation. When a Fleischmann’s glass frog has a snooze, its translucency increases, almost to the point of complete transparency.

“Glass frogs are well known for their highly transparent muscles and ventral skin, through which their bones and other organs are visible,” Taboada and colleagues write in their paper.

“We found that these tissues transmit more than 90 to 95 percent of visible light while maintaining functionality [such as] locomotion [and] vocalization. This transparency is adaptive because it camouflages glass frogs from predators while they sleep on vegetation during the day.”

Glass frogs in various states of activity and transparency. (Taboada et al., Science, 2022)

This is curious, because red blood cells circulating throughout the body can render even transparent tissues opaque. Transparency is also extremely rare in land animals, making glass frogs an exception worth studying. So Taboada decided to study the frogs to figure out their curious trick.

They took 11 Fleischmann’s glass frogs, and used calibrated color photography to repeatedly measure their transparency at different times: while sleeping, while awake, calling to mates, after exercise, and under anesthetic.

The researchers found that the frogs maintained roughly the same level of transparency while awake, calling, exercising, and under anesthetic.

frameborder=”0″ allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen>

However, when they were sleeping, the frogs were between 34 and 61 percent more transparent than during waking activity.

Optical spectroscopy on 13 frogs confirmed that a decrease in circulating red blood cells is the reason for the increased transparency on their undersides. Red blood circulation decreased by up to 89 percent, and the red blood cell signal was concentrated in the liver.

In order to sleep safely, the frogs sequester most of their red blood cells in their liver. When they wake up, red blood cells start circulating normally, and they can go about their normal activity, having suffered no obvious ill effects. It’s quite marvelous.

“The primary result is that whenever glassfrogs want to be transparent, which is typically when they’re at rest and vulnerable to predation, they filter nearly all the red blood cells out of their blood and hide them in a mirror-coated liver – somehow avoiding creating a huge blood clot in the process,” says one of the researchers, Sönke Johnsen, a professor of biology at Duke University.

“Whenever the frogs need to become active again, they bring the cells back into the blood stream, which gives them the metabolic capacity to move around.”

The frogs’ transparency awake and asleep. (Taboada et al., Science, 2022)

It’s unknown how the glass frogs do this, and whether it can be a voluntary response to other situations, such as a threatening predator. It’s also unclear if the frogs have some sort of special metabolic adaptation that allows them to experience dramatic changes in circulation without damaging their other organs.

But the ability to stash red blood cells in the liver while sleeping is not unique to Fleischmann’s glass frog, according to the researchers. They studied three species of tropical opaque tree frogs, and found that their circulating red blood cells decreased by 12 percent while sleeping.

But the discovery that a vertebrate animal can actively remove nearly 90 percent of its blood from circulation while sleeping, and then restore it, has some interesting implications for human health. The fact that they manage to do this on a daily basis without the blood clotting means that their blood cells may have some modifications that act against clotting while the blood is being packed and unpacked, which could help scientists develop new interventions to prevent thrombosis and stroke.

“Finally, these naturally transparent vertebrates are an excellent animal for in vivo physiology research. Their entire body can be imaged with cellular resolution to capture natural hemodynamic processes without restraint or contrast agents,” the researchers conclude.

“Glass frogs’ ability to regulate the location, density, and packing of red blood cells without clotting offers insight in metabolic, hemodynamic, and blood-clot research.”

The research has been published in Science.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Super-Rare Star System Is a Giant Cosmic Accident Waiting to Happen
Scientists Discover a Weird New Form of Ice That May Change How We Think About Water
This Small Australian Marsupial Is Quite Literally Dying For Sex
Scientists Are Making Catfish Hybrids With Alligator DNA For Us to Eat
New Prototype Device Generates Hydrogen From Untreated Seawater

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • Codebreakers Have Deciphered The Lost Letters of Mary, Queen of Scots
  • Millions Are at Risk of Flooding Due to Climate Change – But Not Where You’d Think
  • Astronomers Pinpoint The Mysterious ‘Engine’ of a Super-Powerful Intergalactic Light
  • JWST Has Accidentally Detected a Tiny Asteroid ‘Hidden’ Between Mars And Jupiter
  • A Seismologist Explains The Science of The Devastating Türkiye-Syria Earthquake
  • Ancient Jurassic Predator Emerged From Ghost Ancestor, Scientists Say
  • Scientists Are Making Catfish Hybrids With Alligator DNA For Us to Eat
  • Neanderthals Hunted Giant Elephants Much Larger Than The Ones Today
  • ‘Extinct’ Coronaviruses Still Thrive in North America, Just Not in Humans
  • More Life Than We Ever Realized Could Survive in The Deep Dark of The Ocean

Space

  • Astronomers Pinpoint The Mysterious ‘Engine’ of a Super-Powerful Intergalactic Light
  • JWST Has Accidentally Detected a Tiny Asteroid ‘Hidden’ Between Mars And Jupiter
  • A Planet Almost Exactly Earth’s Size Has Been Found 72 Light-Years Away
  • NASA Rover Encounters Spectacular Metal Meteorite on Mars
  • Jupiter Overtakes Saturn as The Planet With The Most Known Moons

Physics

  • Scientists Discover a Weird New Form of Ice That May Change How We Think About Water
  • A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
  • This Physicist Says Electrons Spin in Quantum Physics After All. Here’s Why
  • Physicists Break Record Firing a Laser Down Their University Corridor
  • Scientists Have Built a Macroscopic Tractor Beam Using Laser Light

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • Codebreakers Have Deciphered The Lost Letters of Mary, Queen of Scots
  • Millions Are at Risk of Flooding Due to Climate Change – But Not Where You’d Think
  • Astronomers Pinpoint The Mysterious ‘Engine’ of a Super-Powerful Intergalactic Light
  • JWST Has Accidentally Detected a Tiny Asteroid ‘Hidden’ Between Mars And Jupiter
  • A Seismologist Explains The Science of The Devastating Türkiye-Syria Earthquake

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.