Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Nature

This Tentacled Microbe Is So Rare, It’s Only Been Found Four Times

October 25, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

You are more likely to take a trip to the Moon than to see a microbe called Legendrea loyezae under a microscope. NASA’s Apollo program has sent a total of 24 people to the Moon between 1968 and 1972.

Only four people (including us) have ever found L. loyezae from its discovery in 1908 to our recently published study.

Considering the expense, it makes sense that the number of people who journeyed to the Moon would be low.

But peeking into the microscopic realm doesn’t require a billion-dollar budget, only a microscope and someone willing to sit in front of it.

Our recent study uncovered 20 new species of microbes as well as 100 rare ones. Each DNA specimen we find gives another piece of the evolution puzzle. Scientists can use this jigsaw to analyze how an organism works.

For example, some genes hint about how a being respires. Or it can give information about the organism’s place on the tree of life.

frameborder=”0″ allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen>

The reason so few scientists have seen these microbes is because undersampling is a major issue. This means most research teams take samples from only a few or even just one location.

Our most recent investigation, which took two years, involved the collection and investigation of well over 1,000 samples.

From the lakes and ponds in Warsaw, Poland, to marine sediments in the North Sea, and the Mediterranean off the coasts of Italy and Portugal, to chalk streams in Dorset, UK we searched for microbes.

And it paid off: we found more than 500 species, including the rare and new ones.

Microbiology is human history

The first life on Earth appeared in water as creatures too small for the human eye to see and stayed that way for billions of years. Microbes live all around us. They can be found in any habitat, from puddles to oceans. But there is still so much we don’t know about them.

Some of these microscopic organisms evolved from simple to more complex beings, eventually giving rise to all the visible life around us. Others have hardly changed and kept their minute size.

Microorganisms were the first predators on Earth and their greedy appetites drove the evolution of more complex life in the early ages of Earth’s history.

After the evolution of complex life, microbes became the main food source for other creatures such as krill and plankton, which in turn are food for larger species. If the organisms at the very bottom of the food chain disappeared, all other parts above them would collapse too.

The timescale of this is so long it’s hard to grasp. If we squeezed Earth’s 4.5 billion years old history into a single year, life would exist on a microscopic scale until the end of October.

Humans would appear on the last 30 minutes of the year, and we would be aware of the existence of the microbes just less than three seconds before the new year.

The Tree of Life shows how organisms are related to each other. Looking at it, you can see most life on Earth is still micro scale, with animals, plants, and fungi restricted to a small cluster of branches within the eukarya group.

In contrast to the other two groups, archaea and bacteria, eukarya members store their DNA in the cell nucleus.

A microscopic rarity

L. loyezae is in the ciliates branch of eukarya. Oxygen is lethal for L. loyezae and it has tentacles that stretch and contract to catch prey. Scientists have discovered thousands of ciliate species.

Ciliates live in aquatic environments, thin water films in soils, and even places where there is no oxygen. Although their lives depend on water, they can form protective structures to stay dormant until they get wet again.

They are composed of only a single cell and yet they are wondrously diverse. Ciliates have interesting hunting strategies – some types specialize in eating filaments of cyanobacteria, which they suck up like spaghetti.

They can swim. Others have a sedentary lifestyle, including Vorticella, which has a stalk to attach itself to submerged surfaces.

Some ciliate species form permanent, physical relationships with other groups of organisms, something known as symbiosis.

For example, they can harbor green algae inside themselves to eat the sugar the algae produce through photosynthesis. In exchange, they protect the algae from larger algae-grazers and viruses (yes, even algae can get viral infections).

Some ciliate species live in densely populated communities, especially in well-oxygenated environments. But others live in such small numbers that finding them is like searching for a thousand needles in a haystack the size of Mount Everest.

Our goal is to find as many of these rare and unusual species as we can. We use our knowledge of species’ ecology as clues.

If we know that a microbe prefers to live in dark, oxygen-free habitats we don’t look for it on the surface of the water where there is plenty of oxygen and light. It took thousands of hours looking through a microscope to find four L. loyezae, not to mention a small fortune on physiotherapy for our cricked necks and aching backs.

Why microbes matter

It’s easy to feel detached from the invisible microbes. Most of us will never get to see one magnified enough for our eyesight to pick up. But learning about microbes has helped inform some of the most important scientific discoveries in history.

Microbes take life as they inflict animal and plant diseases and develop massive blooms in the sea that wipe out aquaculture farms.

But we couldn’t live without them. Microbes are responsible for the survival of our ecosystems and for their recovery after damage such as pollution or climate change. We can’t grow food without microorganisms. They clean our sewage. Some can produce antibiotics and other drugs, others are involved in the production of food.

So exploring the microbial world is well worth the backache.The Conversation

Genoveva Esteban, Professor of Microbial Ecology, Bournemouth University and James Weiss, Researcher, Microbiology, Bournemouth University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

The Mystery of The Ghost Catfish’s Shimmering Rainbow Can Finally Be Explained
Baby Planets May Do Something Sneaky With Their Water to Protect It From Unruly Stars
Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.
The ‘Rapunzel’ Virus Has a Freakishly Long Tail, And We Finally Know Why
Satellites Reveal Sheer Size of Record-Breaking Algae Bloom Approaching Florida

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • ‘Horrifying’ Plastic Rocks Emerge in Remote Island Paradise
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
  • Planting This Could Feed Millions And Lock Away Tons of Carbon
  • Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.

Space

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
  • Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.

Physics

  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics
  • ‘Time Reflections’ Finally Observed by Physicists After Decades of Searching

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.