Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Nature

This Weirdly Smart, Creeping Slime Is Redefining How We Understand Intelligence

November 6, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

Imagine you’re walking through a forest, and you roll over a log with your foot. Spreading out on its underside is something moist and yellow – a bit like something you may have sneezed out… if that something was banana-yellow and fanned itself out into elegant fractal branches.

What you’d see is the plasmodium form of Physarum polycephalum, the many-headed slime mold. Like other slime molds found in nature, it fills an important ecological role, aiding in the decay of organic matter to recycle it into the food web.

This bizarre little organism doesn’t have a brain, or a nervous system; its blobby, bright-yellow body is just one cell. This slime mold species has thrived, more or less unchanged, for a billion years in its damp, decaying habitats.

And, in the last decade, it’s been changing how we think about cognition and problem-solving.

“I think it’s the same kind of revolution that occurred when people realized that plants could communicate with each other,” said biologist Audrey Dussutour of the French National Center for Scientific Research.

“Even these tiny little microbes can learn. It gives you a bit of humility.”

P. polycephalum in its natural habitat. (Kay Dee/iNaturalist, CC BY-NC)

P. polycephalum – adorably nicknamed “The Blob” by Dussutour – isn’t exactly rare. It can be found in dark, humid, cool environments like the leaf litter on a forest floor. It’s also really peculiar; although we call it a ‘mold’, it is not actually fungus. Nor is it animal or plant, but a member of the protist kingdom – a sort of catch-all group for anything that can’t be neatly categorized in the other three kingdoms.

It starts its life as many individual cells, each with a single nucleus. Then, they merge to form the plasmodium, the vegetative life stage in which the organism feeds and grows.

In this form, fanning out in veins to search for food and explore its environment, it’s still a single cell, but containing millions or even billions of nuclei swimming in the cytoplasmic fluid confined within the bright-yellow membrane.

Cognition without a brain

Like all organisms, P. polycephalum needs to be able to make decisions about its environment. It needs to seek food and avoid danger. It needs to find the ideal conditions for its reproductive cycle. And this is where our little yellow friend gets really interesting. P. polycephalum doesn’t have a central nervous system. It doesn’t even have specialized tissues.

Yet it can solve complex puzzles, like labyrinth mazes, and remember novel substances. The kind of tasks we used to think only animals could perform.

“We’re talking about cognition without a brain, obviously, but also without any neurons at all. So the underlying mechanisms, the whole architectural framework of how it deals with information is totally different to the way your brain works,” biologist Chris Reid of Macquarie University in Australia told ScienceAlert in 2021.

“By providing it with the same problem-solving challenges that we’ve traditionally given to animals with brains, we can start to see how this fundamentally different system might arrive at the same outcome. It’s where it becomes clear that for a lot of these things – that we’ve always thought required a brain or some kind of higher information processing system – that’s not always necessary.”

physarum veins(David Villa/ScienceImage/CBI/CNRS)

P. polycephalum is well known to science. Decades ago, it was, as physicist Hans-Günther Döbereiner of the University of Bremen in Germany explained, the “workhorse of cell biology”. It was easy to clone, keep, and study.

However, as our genetic analysis toolkits evolved, organisms such as mice or cell lines such as HeLa took over, and P. polycephalum fell by the wayside.

In 2000, biologist Toshiyuki Nakagaki of RIKEN in Japan brought the little beastie out of retirement – and not for cell biology. His paper, published in Nature, bore the title “Maze-solving by an amoeboid organism” – and that’s exactly what P. polycephalum had done.

Nakagaki and his team had put a piece of plasmodium at one end of a maze, a food reward (oats, because P. polycephalum loves oat bacteria) at the other, and watched what happened.

The results were stunning. This weird little acellular organism managed to find the fastest route through every maze thrown at it.

“That triggered a wave of research into what other kinds of more difficult scenarios we can test the slime mold with,” Reid said.

“Virtually all of those have been surprising in some way or another, and surprised the researchers in how the slime mold actually performed. It revealed some limitations as well. But mostly, it’s been a voyage of revelation on how this simple creature can do tasks that have always been given to and thought to be the domain of higher organisms.”

Full of surprises

Nakagaki recreated the Tokyo subway, with the station nodes marked out with oats; P. polycephalum recreated it almost exactly – except the slime mold version was more robust to damage, wherein if a link got severed, the rest of the network could carry on.

Yet another team of researchers found that the protist could efficiently solve the traveling salesman problem, an exponentially complex mathematical task that programmers routinely use to test algorithms.

allowfullscreen=”allowfullscreen”>

Earlier this year, a team of researchers found that P. polycephalum can “remember” where it has previously found food based on the structure of the veins in that area. This followed previous research from Dussutour and her colleagues, who discovered that blobs of slime mold could learn and remember substances that they didn’t like, and communicate that information to other blobs of slime mold once they fused.

“I’m still amazed by how, in a way, complex they are because they always surprise you in an experiment, they would never do exactly what you choose to do,” Dussutour said.

In one instance, her team was testing a growth medium used for mammal cells and wanted to see if the slime would like it.

“It hated it. It started to build this weird three-dimensional structure so it could go on the lead and escape. And I’m like, ‘Oh my gosh, this organism’.”

A processing network

Although it’s technically a single-celled organism, P. polycephalum is considered a network, exhibiting collective behavior. Each part of the slime mold operates independently and shares information with its neighboring sections, with no centralized processing.

“I guess the analogy would be neurons in a brain,” Reid said. “You have this one brain that’s composed of lots of neurons – it’s the same for the slime mold.”

Physarym polycephalum, “The blob”
Network emergence
Oscillation waves#blob pic.twitter.com/kJUhH0w05a

— Audrey Dussutour (@Docteur_Drey) April 3, 2021

That brain analogy is a really intriguing one, and it wouldn’t be the first time P. polycephalum has been compared to a network of neurons. The topology and structure of brain networks and slime mold blobs are very similar, and both systems exhibit oscillations.

It’s not entirely clear how information is propagated and shared in the slime mold, but we do know that P. polycephalum‘s veins contract to act as a peristaltic pump, pushing cytoplasmic fluid from section to section. And oscillations in this fluid seem to coincide with encounters with external stimuli.

“It’s thought that these oscillations convey information, process information, by the way they interact and actually produce the behavior at the same time,” Döbereiner told ScienceAlert.

“If you have a network of Physarum go to a certain food, it changes oscillation pattern when it encounters sugar: it starts to oscillate quicker. Because of these quicker oscillations, the whole organism starts changing its oscillation pattern and starts to flow into the direction where the food was found.”

He and colleagues published a paper in 2021 demonstrating that these oscillations are extraordinarily similar to the oscillations seen in a brain, only a hydrodynamic system rather than electrical signals.

“What’s relevant is not so much what oscillates and how the information is transported,” he explains, “but that it oscillates and that a topology is relevant – is one neuron connected to 100 neurons or just to two; is a neuron connected just to its neighbors or is it connected to another neuron very far away.”

physarum skullP. polycephalum growing on a life-sized model of a human skull. (Andrew Adamatzky, Artifical Life, 2015)

Defining cognition

As exciting as its escapades may seem, any researcher working with it will tell you that P. polycephalum is not, in itself, a brain. It’s not capable of higher-level processing or abstract reasoning, as far as we can tell.

Nor is it, as intriguing as the notion may seem, likely to evolve into something like a brain. The organism has had a billion years to do so and shows no sign of going in that direction (although if any science fiction writers out there like the idea, feel free to run with it).

In terms of overall biology, slime mold is extremely simple. And by that very fact, it’s changing how we understand problem-solving.

Just like other organisms, it needs food, it needs to navigate its environment, and it needs a safe place to grow and reproduce. These problems can be complex, and yet P. polycephalum can solve them with its extremely limited cognitive architecture. It does so in its own simple way and with its own limitations, said Reid, “but that in itself is one of the beautiful things about the system”.

In a sense, it leaves us with an organism – a wet, slimy, damp-loving blob – whose cognition is fundamentally different from our own. And, just like the Tokyo subway, that can teach us new ways to solve our own problems.

“It’s teaching us about the nature of intelligence, really, challenging certain views, and basically widening the concept,” Reid said.

“It does force us to challenge these long-held anthropocentric beliefs that we are unique and capable of so much more than other creatures.”

A version of this article was first published in June 2021.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

LIVE: Newly Detected Asteroid Is Passing Earth Closer Than The Moon Right Now
Radioactive Leak at Minnesota Nuclear Plant Revealed Months After Accident
This Incredible Dinosaur Had The Longest Neck Known to Science
Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
This Adaptation Allowed Dinosaurs to Not Only Survive But to Dominate The Planet

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • ‘Horrifying’ Plastic Rocks Emerge in Remote Island Paradise
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
  • Planting This Could Feed Millions And Lock Away Tons of Carbon
  • Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.

Space

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
  • Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.

Physics

  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics
  • ‘Time Reflections’ Finally Observed by Physicists After Decades of Searching

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.