Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Physics

All Bananas Really Are Radioactive. An Expert Explains What That Means

November 3, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

The simple mention of the word “radiation” often evokes fear in people. For others, it’s fun to think a little exposure to radiation could turn you into the next superhero, just like the Hulk.

But is it true basically everything around us is radioactive, even the food we eat? You may have heard bananas are mildly radioactive, but what does that actually mean? And despite us not being superheroes, are human bodies also radioactive?

What is radiation?

Radiation is energy that travels from one point to another, either as waves or particles. We are exposed to radiation from various natural and artificial sources every day.

Cosmic radiation from the Sun and outer space, radiation from rocks and soil, as well as radioactivity in the air we breathe and in our food and water, are all sources of natural radiation.

Bananas are a common example of a natural radiation source. They contain high levels of potassium, and a small amount of this is radioactive. But there’s no need to give up your banana smoothie – the amount of radiation is extremely small, and far less than the natural “background radiation” we are exposed to every day.

Artificial sources of radiation include medical treatments and X-rays, mobile phones and power lines. There is a common misconception that artificial sources of radiation are more dangerous than naturally occurring radiation. However, this just isn’t true.

There are no physical properties that make artificial radiation different or more damaging than natural radiation. The harmful effects are related to dose, and not where the exposure comes from.

What is the difference between radiation and radioactivity?

The words “radiation” and “radioactivity” are often used interchangeably. Although the two are related, they are not quite the same thing.

Radioactivity refers to an unstable atom undergoing radioactive decay. Energy is released in the form of radiation as the atom tries to reach stability, or become non-radioactive.

The radioactivity of a material describes the rate at which it decays, and the process(es) by which it decays. So radioactivity can be thought of as the process by which elements and materials try to become stable, and radiation as the energy released as a result of this process.

Ionizing and non-ionizing radiation

Depending on the level of energy, radiation can be classified into two types.

Ionizing radiation has enough energy to remove an electron from an atom, which can change the chemical composition of a material. Examples of ionizing radiation include X-rays and radon (a radioactive gas found in rocks and soil).

Non-ionizing radiation has less energy but can still excite molecules and atoms, which causes them to vibrate faster. Common sources of non-ionizing radiation include mobile phones, power lines, and ultraviolet rays (UV) from the Sun.

Diagram of electomagnetic spectrum from radio to gamma rays.
The electromagnetic spectrum includes all types of electromagnetic radiation. (brgfx/Shutterstock)

Is all radiation dangerous? Not really

Radiation is not always dangerous – it depends on the type, the strength, and how long you are exposed to it.

As a general rule, the higher the energy level of the radiation, the more likely it is to cause harm. For example, we know that overexposure to ionizing radiation – say, from naturally occurring radon gas – can damage human tissues and DNA.

We also know that non-ionizing radiation, such as the UV rays from the Sun, can be harmful if the person is exposed to sufficiently high intensity levels, causing adverse health effects such as burns, cancer, or blindness.

Importantly, because these dangers are well known and understood, they can be protected against. International and national expert bodies provide guidelines to ensure the safety and radiation protection of people and the environment.

For ionizing radiation, this means keeping doses above the natural background radiation as low as reasonably achievable – for example, only using medical imaging on the part of the body required, keeping the dose low, and retaining copies of images to avoid repeat exams.

For non-ionizing radiation, it means keeping exposure below safety limits. For example, telecommunications equipment uses radiofrequency non-ionizing radiation and must operate within these safety limits.

Additionally, in the case of UV radiation from the Sun, we know to protect against exposure using sunscreen and clothing when levels reach 3 and above on the UV index.

Radiation in medicine

While there are clear risks involved when it comes to radiation exposure, it’s also important to recognize the benefits. One common example of this is the use of radiation in modern medicine.

Medical imaging uses ionizing radiation techniques, such as X-rays and CT scans, as well as non-ionizing radiation techniques, such as ultrasound and magnetic resonance imaging ( MRI).

These types of medical imaging techniques allow doctors to see what’s happening inside the body and often lead to earlier and less invasive diagnoses. Medical imaging can also help to rule out serious illness.

Radiation can also help treat certain conditions – it can kill cancerous tissue, shrink a tumor or even be used to reduce pain.

So are our bodies also radioactive? The answer is yes, like everything around us, we are also a little bit radioactive. But this is not something we need to be worried about.

Our bodies were built to handle small amounts of radiation – that’s why there is no danger from the amounts we are exposed to in our normal daily lives. Just don’t expect this radiation to turn you into a superhero any time soon, because that definitely is science fiction.The Conversation

Sarah Loughran, Director Radiation Research and Advice (ARPANSA), and Adjunct Associate Professor (UOW), University of Wollongong

This article is republished from The Conversation under a Creative Commons license. Read the original article.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

The Origins of Human Empathy May Go All The Way Back to The Ocean
Incredible Experiment Shows AI Can Read Minds to Visualize Our Thoughts
Tech Giants Call For a Pause in AI Experiments, Fearing “Profound Risks to Society”
Newly Discovered Species of Orchid Looks Like Delicate Piece of Glass Art
A Look at The Proton’s Inner Structure Shows How Its Mass Isn’t The Same as Its Size

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • Bizarre Space Explosion Was The Flattest Of Its Kind Ever Seen
  • Scientists Create World’s Lightest Paint: Just 3 Pounds Covers a Boeing 747
  • The Earliest Supermassive Black Hole Ever Found Has Just Been Spotted
  • Incredible Experiment Shows AI Can Read Minds to Visualize Our Thoughts
  • Extreme ‘X-Class’ Solar Flare Hits Earth, Causing Radio Blackout
  • Tyrannosaurus Rex Had Lips Like a Lizard, Scientists Reveal
  • Plants Really Do ‘Scream’ Out Loud. We Just Never Heard It Until Now.
  • Tech Giants Call For a Pause in AI Experiments, Fearing “Profound Risks to Society”
  • Africa’s Giant Pouched Rats Simply Seal Up Their Vaginas When They Don’t Want Kids
  • A Newborn Jupiter Could Have Been Bright Enough to Bake Its Moons

Space

  • Bizarre Space Explosion Was The Flattest Of Its Kind Ever Seen
  • The Earliest Supermassive Black Hole Ever Found Has Just Been Spotted
  • Extreme ‘X-Class’ Solar Flare Hits Earth, Causing Radio Blackout
  • A Newborn Jupiter Could Have Been Bright Enough to Bake Its Moons
  • Most Powerful Explosion Ever Seen in Space Was Too Bright to Accurately Measure

Physics

  • This Surprisingly Simple Shape Solves a Longstanding Mathematical Problem
  • A Look at The Proton’s Inner Structure Shows How Its Mass Isn’t The Same as Its Size
  • Extreme Horizons in Space Could Lure Quantum States Into Reality
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • Bizarre Space Explosion Was The Flattest Of Its Kind Ever Seen
  • Scientists Create World’s Lightest Paint: Just 3 Pounds Covers a Boeing 747
  • The Earliest Supermassive Black Hole Ever Found Has Just Been Spotted
  • Incredible Experiment Shows AI Can Read Minds to Visualize Our Thoughts
  • Extreme ‘X-Class’ Solar Flare Hits Earth, Causing Radio Blackout

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.