Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Physics

Engineers Create an ‘Impossible’ Light Sensor With an Efficiency of 200%

February 21, 2023 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

Scientists have produced a sensor that converts light into an electrical signal at an astonishing 200 percent efficiency – a seemingly impossible figure that was achieved through the weirdness of quantum physics.

Such is the sensitivity of the device known as a photodiode, the team responsible for its innovation says it could potentially be used in technology that monitors a person’s vital signs (including heartbeat or respiration rate) without anything needing to be inserted or even attached to the body.

Photodiode efficiency is typically measured as the number of available light particles it can convert into electrical signals. Here, the scientists are talking about something closely related, but a bit more specific: photoelectron yield, or the number of electrons generated by photons hitting the sensor.

The photoelectron yield of a photodiode is determined by its quantum efficiency – the essential capability of a material to produce charge-carrying particles at a fundamental level, rather than the amount of electrical power produced.

“[T]his sounds incredible, but, we’re not talking about normal energy efficiency here,” says chemical engineer Rene Janssen, from the Eindhoven University of Technology in the Netherlands.

“What counts in the world of photodiodes is quantum efficiency. Instead of the total amount of solar energy, it counts the number of photons that the diode converts into electrons.”

As a starting point, the team worked on a device that combined two types of solar panel cells, perovskite and organic. By stacking cells so light that’s missed by one layer is picked up by another, the researchers achieved 70 percent quantum efficiency.

To push this figure higher, additional green light was introduced. The sensor was also optimized to improve its ability to filter different types of light, and respond to no light at all. This pushed the quantum efficiency of the photodiode past 200 percent, although at this stage it’s not clear exactly why that boost is happening.

The key might be the way photodiodes produce a current. Photons excite electrons in the photodiode material, causing them to migrate and create a build-up of charge. The researchers hypothesize that the green light might release electrons on one layer, which are converted into current only when photons strike a different layer.

The photodiode (right) picks up the signal from the finger and displays it on the screen (left).
Researcher Riccardo Ollearo shows how the photodiode (right) picks up the signal from his finger. (Photo: Bart van Overbeeke)

“We think that the additional green light leads to a build-up of electrons in the perovskite layer,” says chemical engineer Riccardo Ollearo, from the Eindhoven University of Technology. “This acts as a reservoir of charges that is released when infrared photons are absorbed in the organic layer.”

“In other words, every infrared photon that gets through and is converted into an electron, gets company from a bonus electron, leading to an efficiency of 200 per cent or more.”

A more efficient photodiode is also a more sensitive photodiode – one that’s better able to observe very small changes in light from greater distances. This brings us back to measuring beating hearts and respiration levels.

Using their super-thin photodiode, one that’s a hundred times thinner than a sheet of newspaper, the researchers measured small changes in infrared light reflected back from a finger from a distance of 130 centimeters (51.2 inches). This was shown to match blood pressure and heart rate, much as a smartwatch sensor does but operating from across a table.

With a similar set up, the team measured respiration rates from slight chest movements. There’s potential here for all sorts of monitoring and medical purposes, if the technology can be successfully developed from the lab stage.

“We want to see if we can further improve the device, for instance by making it quicker,” says Janssen. “We also want to explore whether we can clinically test the device.”

The research has been published in Science Advances.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Planting This Could Feed Millions And Lock Away Tons of Carbon
Notre Dame’s Fire Reveals a Major Surprise Hidden in Its Architecture
This Incredible Dinosaur Had The Longest Neck Known to Science
Millions of Dead Fish Blanket Australian River in Hypoxia Disaster
Landmark UN Climate Report Delivers a Key Message: There’s Still Time to Act.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • Newly Discovered Species of Orchid Looks Like Delicate Piece of Glass Art
  • This Incredible Flower Makes Fake Flies, And We Finally Know How
  • Complete Depiction of The Zodiac Found in Ancient Egyptian Temple
  • Radical NASA Propulsion Concept Could Reach Interstellar Space in Under 5 Years
  • Don’t Be Fooled: The Hidden Detail NASA Didn’t Show in New Spacesuits
  • Octopus Farming Is Deeply Disturbing. A Professor Explains Why.
  • Tasmanian Tiger ‘Probably’ Survived to 1980s or Even Later, Study Claims
  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough

Space

  • Radical NASA Propulsion Concept Could Reach Interstellar Space in Under 5 Years
  • Don’t Be Fooled: The Hidden Detail NASA Didn’t Show in New Spacesuits
  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained

Physics

  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics
  • ‘Time Reflections’ Finally Observed by Physicists After Decades of Searching

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • Newly Discovered Species of Orchid Looks Like Delicate Piece of Glass Art
  • This Incredible Flower Makes Fake Flies, And We Finally Know How
  • Complete Depiction of The Zodiac Found in Ancient Egyptian Temple
  • Radical NASA Propulsion Concept Could Reach Interstellar Space in Under 5 Years
  • Don’t Be Fooled: The Hidden Detail NASA Didn’t Show in New Spacesuits

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.