Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

An Epic Cosmic Smash-Up May Have Revealed Evidence of The Universe’s Missing Matter

October 15, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

A collision between some of the largest structures in space has just given us a clue about one of the biggest mysteries in the Universe: the location of a whole pile of missing matter.

In the galaxy cluster Abell 98 – in which two sub-clusters are in the process of merging – scientists have found a filament of gas consistent with something called the warm-hot intergalactic medium (WHIM).

This fog of plasma thought to float around in between galaxies happens to be one of the leading candidates for the location of a shortfall in the amount of visible, garden-variety particles called ‘baryonic matter’ measured in the local Universe.

Previous evidence suggests that the WHIM is out there, but it’s proven difficult to locate enough of the material to argue how it contributes to the missing baryons.

“Finding these filaments of missing matter has proven to be exceptionally difficult, and only a few examples are known,” says astrophysicist Arnab Sarkar of the Harvard-Smithsonian Center for Astrophysics (CfA). “We are excited that we have likely pinpointed another.”

The missing matter is one of the stranger questions we have about the Universe. We know, more or less, the distribution of matter/energy throughout the cosmos. Most of it is stuff we can’t detect and therefore don’t even know what it is: 68 percent in the form of dark energy and 27 percent as dark matter.

The remaining 5 or so percent is baryonic matter. That’s the stuff that we can detect, and from which everything we see is made: stars, planets, dust, galaxies, clouds, black holes, humans.

We know how much baryonic matter was around at the time of the Big Bang because we have radiation left over from that epoch, the Cosmic Microwave Background (CMB), that scientists have been able to decode.

When scientists started to take stock of the baryonic matter that’s immediately around us today, however, the numbers didn’t add up. There’s a lot missing, between half and a third of what has been predicted based on the CMB.

One possible location for this is the WHIM; filaments of gas with temperatures between 10,000 and 10 million Kelvin, in which baryons are shock-heated and compressed. However, locating these tenuous structures in the space between much brighter galaxies has been tricky.

Enter Abell 98, a cluster of galaxies around 1.4 billion light-years away. X-ray observations of Abell 98 have revealed hot gas structures between two sub-clusters. Earlier this year, Sarkar and his colleagues published an analysis finding that this filament contains a giant shock wave as the sub-clusters come together.

Their analysis also probed the properties of the filament of gas and found two distinct temperature regimes: one at 20 million Kelvin, and the second at 10 million Kelvin. The hotter gas, the researchers say, is likely the result of the gas haloes around the two sub-clusters overlapping.

The cooler gas, on the other hand, is consistent with the hotter, denser end of the theorized WHIM range, the team found.

In a second paper, a team of researchers led by astrophysicist Gabriella Alvarez of CfA has found further evidence for WHIM, not in the space between the two sub-clusters, but on the far side of the sub-cluster, far from the shock front. This, too, was consistent with denser WHIM.

“These measurements,” the researchers write in the paper, “provide tantalizing evidence for the presence of a larger-scale structure, with the diffuse WHIM connecting to the cluster outskirts along cosmic filaments.”

We still haven’t identified enough WHIM to account for all the missing baryons. It could also be hiding in other places; evidence suggests that some may be hiding in gas filaments stretching between galaxies, or lurking as clouds of thin gas in intergalactic space.

But our tools for detecting WHIM are getting more powerful, with new-generation X-ray telescopes taking to the skies. When they peer into the voids between the stars, they should reveal even more of the secrets of deep space, and what lurks therein.

The two papers are to appear, respectively, in The Astrophysical Journal Letters and The Astrophysical Journal, and are available on arXiv. They can be found here and here.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Mysterious Medieval City in Africa Had a Genius System to Survive Drought
New Prototype Device Generates Hydrogen From Untreated Seawater
AI Predicts We’ll Breach Our Climate Goal in Just 10 Years
Ancient Goo Spills The Secrets of How The Egyptians Mummified Their Dead
The First Stars May Have Been Heavier Than 100,000 Suns

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • A Hidden Food Web Exists in The Desert, And It Thrives on Death
  • It’s Possible Neanderthals Evolved So They Wouldn’t Smell Their Own Stink, Study Finds
  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • Bar Graphs Induce a Hidden Bias in Interpretation, Experiment Shows
  • This Small Australian Marsupial Is Quite Literally Dying For Sex
  • ‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • An Incredible Thing Happens When Dolphins And Humans Team Up

Space

  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • Stunning Green Comet Will Be Closest to Earth Today, at Peak Brightness

Physics

  • A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
  • This Physicist Says Electrons Spin in Quantum Physics After All. Here’s Why
  • Physicists Break Record Firing a Laser Down Their University Corridor
  • Scientists Have Built a Macroscopic Tractor Beam Using Laser Light
  • Firing a Laser Into The Sky Can Divert Lightning, Experiment Shows

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • A Hidden Food Web Exists in The Desert, And It Thrives on Death
  • It’s Possible Neanderthals Evolved So They Wouldn’t Smell Their Own Stink, Study Finds
  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.