Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

Colliding Neutron Stars Created a Neutron Star We Thought Too Heavy to Exist

November 20, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

A flash of light emitted by colliding neutron stars has once again upended our understanding of how the Universe works.

Analysis of the short gamma-ray burst spat out as the two stars merged revealed that, rather than forming a black hole, as expected, the immediate product of the merger was a highly magnetized neutron star far heavier than the estimated maximum neutron star mass.

This magnetar seems to have persisted for over a day before collapsing down into a black hole.

“Such a massive neutron star with a long life expectancy is not normally thought to be possible,” astronomer Nuria Jordana-Mitjans of the University of Bath in the UK told The Guardian. “It is a mystery why this one was so long-lived.”

Neutron stars are on a spectrum of how a star can end up at the end of its life. For millions or billions (or potentially trillions) of years, a star will chug along, an engine fusing atoms in its hot pressurized core.

Eventually, the atoms a star can fuse will run out, and at this point, everything sort of explodes. The star ejects its outer mass and, no longer supported by the outward pressure supplied by fusion, the core collapses under the inward pressure of gravity.

How we categorize these collapsed cores depends on the mass of the object. The cores of stars that started out up to around 8 times the mass of the Sun collapse down into white dwarfs, which have an upper mass limit of 1.4 solar masses, squished into a sphere around the size of Earth.

The cores of stars between 8 and 30 solar masses turn into neutron stars, between around 1.1 and 2.3 solar masses, in a sphere just 20 kilometers (12 miles) across). And the biggest stars, over the neutron star upper mass limit, collapse into black holes, according to theory.

But there’s a very notable dearth of black holes below 5 solar masses, so what happens in that mass regime is largely a mystery.

This is why neutron star mergers are so interesting to astronomers. They come about when two neutron stars are in a binary system and have reached the point of orbital decay at which they inevitably smoosh together and become one object combining the two neutron stars.

Most binary neutron stars have a combined mass that exceeds the theoretical upper mass limit for neutron stars. So the products of these mergers are likely to sit solidly within that neutron star-black hole mass gap.

When they collide, binary neutron stars release a burst of high-energy radiation known as a short-duration gamma-ray burst. Scientists had thought that these could only be emitted during the formation of a black hole.

But exactly how the merging neutron stars turn into a black hole has been something of a puzzle. Does the black hole form instantaneously, or do the two neutron stars produce a very heavy neutron star that then collapses into a black hole very quickly, no more than a few hundred milliseconds after the merger?

GRB 180618A was a short-duration gamma-ray burst detected in June 2018, light that had traveled 10.6 billion years to reach us. Jordana-Mitjans and her colleagues wanted to take a closer look at the light emitted by this object: the burst itself, the kilonova explosion, and the longer-lived afterglow.

But, when they looked at the electromagnetic radiation produced by the event over time, something was off.

The afterglow’s optical emission disappeared 35 minutes after the gamma-ray burst. This, the team found, was because it was expanding at close to light speed, accelerated by a continuous energy source.

This was consistent not with a black hole, but with a neutron star. And not just any neutron star. It seemed to be what we call a magnetar: one with a magnetic field 1,000 times more powerful than an ordinary neutron star’s, and a quadrillion times more powerful than Earth’s. And it hung around for over 100,000 seconds (nearly 28 hours).

“For the first time,” Jordana-Mitjans says, “our observations highlight multiple signals from a surviving neutron star that lived for at least one day after the death of the original neutron star binary.”

What could have helped the magnetar live this long isn’t clear. It’s possible that the magnetic field gave it a little help, providing an outward pull that prevented it from collapsing all the way, at least for a little while.

Whatever the mechanism was – and this is definitely going to warrant some further investigation – the team’s work shows that supramassive neutron stars are capable of launching short-duration gamma-ray bursts, and that we can no longer assume the presence of a black hole.

“Such findings are important as they confirm that newborn neutron stars can power some short-duration GRBs and the bright emissions across the electromagnetic spectrum that have been detected accompanying them,” Jordana-Mitjans says.

“This discovery may offer a new way to locate neutron star mergers, and thus gravitational waves emitters, when we’re searching the skies for signals.”

The research has been published in The Astrophysical Journal.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Planting This Could Feed Millions And Lock Away Tons of Carbon
Complete Depiction of The Zodiac Found in Ancient Egyptian Temple
The Origins of Human Empathy May Go All The Way Back to The Ocean
Radical NASA Propulsion Concept Could Reach Interstellar Space in Under 5 Years
Don’t Be Fooled: The Hidden Detail NASA Didn’t Show in New Spacesuits

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • Uncanny Coincidence: Fast Radio Burst Detected After Gravitational Wave Event
  • The Origins of Human Empathy May Go All The Way Back to The Ocean
  • Entire Planets Made of Dark Matter May Exist. Here’s How We Can Find Them.
  • Thousands of Mummified Ram Heads Revealed in Ancient Egyptian Temple
  • Extreme Horizons in Space Could Lure Quantum States Into Reality
  • Strange Signal From Decades Ago Hints at Hidden Oceans Orbiting Uranus
  • ‘Scientifically Interesting’ Asteroid Sailing Between Earth And The Moon Today
  • Newly Discovered Species of Orchid Looks Like Delicate Piece of Glass Art
  • This Incredible Flower Makes Fake Flies, And We Finally Know How
  • Complete Depiction of The Zodiac Found in Ancient Egyptian Temple

Space

  • Uncanny Coincidence: Fast Radio Burst Detected After Gravitational Wave Event
  • Entire Planets Made of Dark Matter May Exist. Here’s How We Can Find Them.
  • Strange Signal From Decades Ago Hints at Hidden Oceans Orbiting Uranus
  • ‘Scientifically Interesting’ Asteroid Sailing Between Earth And The Moon Today
  • Radical NASA Propulsion Concept Could Reach Interstellar Space in Under 5 Years

Physics

  • Extreme Horizons in Space Could Lure Quantum States Into Reality
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • Uncanny Coincidence: Fast Radio Burst Detected After Gravitational Wave Event
  • The Origins of Human Empathy May Go All The Way Back to The Ocean
  • Entire Planets Made of Dark Matter May Exist. Here’s How We Can Find Them.
  • Thousands of Mummified Ram Heads Revealed in Ancient Egyptian Temple
  • Extreme Horizons in Space Could Lure Quantum States Into Reality

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.