Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

Earth’s Moon Could Have Taken Just Hours to Form From a Shattered Mess

October 5, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

The Moon could have formed immediately after a cataclysmic impact that tore off a chunk of Earth and hurled it into space, a new study has suggested.

Since the mid-1970s, astronomers have thought that the Moon could have been made by a collision between Earth and an ancient Mars-size protoplanet called Theia; the colossal impact would have created an enormous debris field from which our lunar companion slowly formed over thousands of years.

But a new hypothesis, based on supercomputer simulations made at a higher resolution than ever before, suggests that the Moon’s formation might not have been a slow and gradual process after all, but one that instead took place within just a few hours.

The scientists published their findings October 4 in the journal The Astrophysical Journal Letters.

Related: Mystery rocket that smashed into the Moon left 2 craters, NASA says

“What we have learnt is that it is very hard to predict how much resolution you need to simulate these violent and complex collisions reliably – you simply have to keep testing until you find that increasing the resolution even further stops making a difference to the answer you get,” Jacob Kegerreis, a computational cosmologist at Durham University in England, told Live Science.

Scientists got their first clues about the Moon’s creation after the return of the Apollo 11 mission in July 1969, when NASA astronauts Neil Armstrong and Buzz Aldrin brought 47.6 pounds (21.6 kilograms) of lunar rock and dust back to Earth.

The samples dated to around 4.5 billion years ago, placing the Moon’s creation in the turbulent period roughly 150 million years after the formation of the solar system.

Other clues point to our largest natural satellite being birthed by a violent collision between Earth and a hypothetical planet, which scientists named after the mythic Greek titan Theia – the mother of Selene, goddess of the Moon.

This evidence includes similarities in the composition of lunar and Earth rocks; Earth’s spin and the Moon’s orbit having similar orientations; the high combined angular momentum of the two bodies; and the existence of debris disks elsewhere in our solar system.

But exactly how the cosmic collision played out is up for debate. The conventional hypothesis suggests that as Theia crashed into Earth, the planet-busting impact shattered Theia into millions of pieces, reducing it to floating rubble.

Theia’s broken remains, along with some vaporized rocks and gas ripped from our young planet’s mantle, slowly mingled into a disk around which the molten sphere of the Moon coalesced and cooled over millions of years.

Yet some parts of the picture remain elusive. One outstanding question is why, if the Moon is mostly made out of Theia, do many of its rocks bear striking similarities to those found on Earth?

Some scientists have suggested that more of Earth’s vaporized rocks went into creating the Moon than Theia’s pulverized remnants did, but this idea presents its own problems, such as why other models suggest that a Moon made mostly of disintegrated Earth rocks would have a vastly different orbit than the one we see today.

To investigate different possible scenarios for Moon formation following the collision, the new study’s authors turned to a computer program called SPH With Inter-dependent Fine-grained Tasking (SWIFT), which is designed to closely simulate the complex and ever-changing web of gravitational and hydrodynamic forces that act upon large amounts of matter.

Doing so accurately is no simple computational task, so the scientists used a supercomputer to run the program: a system nicknamed COSMA (short for “cosmology machine”) at Durham University’s Distributed Research Utilising Advanced Computing facility (DiRAC).

By using COSMA to simulate hundreds of Earth-Theia collisions with different angles, spins, and speeds, the lunar sleuths were able to model the aftermath of the astronomical crack-up at higher resolutions than ever before.

Resolutions in these simulations are set by the number of particles the simulation uses. According to Kegerreis, for gigantic impacts the standard simulation resolution is usually between 100,000 and 1 million particles, but in the new study, he and his fellow researchers were able to model up to 100 million particles.

frameborder=”0″ allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen>

“With a higher resolution we can study more detail – much like how a larger telescope lets you take higher resolution images of distant planets or galaxies to discover new details,” Kegerreis said.

“Secondly, perhaps even more importantly, using too low a resolution in a simulation can give you misleading or even simply wrong answers,” he added.

“You might imagine that if you build a model car out of toy blocks to simulate how the car might break in a crash, then if you use only a few dozen blocks, it might just split perfectly down the middle. But with a few thousand or million, then you might start to get it crumpling and breaking in a more realistic way.”

The higher-resolution simulation left the researchers with a Moon which formed in a matter of hours from the ejected chunks of Earth and the shattered pieces of Theia, offering single-stage formation theory that offered a clean and elegant answer to the Moon’s visible properties, such as its wide, tilted orbit; its partially molten interior; and its thin crust.

However, the researchers will have to examine rock and dust samples excavated from deep beneath the Moon’s surface – an objective of NASA’s future Artemis missions – before they can confirm how mixed its mantle could be.

“Even more samples from the surface of the Moon could be extremely helpful for making new and more confident discoveries about the Moon’s composition and evolution, which we can then trace back to model simulations like ours,” Kegerreis said.

“Missions and studies like these and many others steadily help us to rule out more possibilities and narrow in on the actual history of both the Moon and Earth, and to learn more about how planets form throughout and beyond our solar system.”

Such investigations could also shed light on how Earth took shape and became a life-harboring planet.

“The more we learn about how the Moon came to be, the more we discover about the evolution of our own Earth,” study co-author Vincent Eke, an associate professor of Physics at Durham University, said in a statement. “Their histories are intertwined – and could be echoed in the stories of other planets changed by similar or very different collisions.”

Related content:

This article was originally published by Live Science. Read the original article here.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Entire Planets Made of Dark Matter May Exist. Here’s How We Can Find Them.
‘Horrifying’ Plastic Rocks Emerge in Remote Island Paradise
Octopus Farming Is Deeply Disturbing. A Professor Explains Why.
‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
Surprise! ChatGPT Turns Out to Be Terrible at Wordle

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • JWST Gives Us Our Best Look Yet at Earth-Sized Exoplanet TRAPPIST-1b
  • Surprise! ChatGPT Turns Out to Be Terrible at Wordle
  • Huge Amounts of Water on The Moon May Have Just Been Located
  • Oldest Ichthyosaur Known to Science Discovered on Remote Arctic Island
  • Uncanny Coincidence: Fast Radio Burst Detected After Gravitational Wave Event
  • The Origins of Human Empathy May Go All The Way Back to The Ocean
  • Entire Planets Made of Dark Matter May Exist. Here’s How We Can Find Them.
  • Thousands of Mummified Ram Heads Revealed in Ancient Egyptian Temple
  • Extreme Horizons in Space Could Lure Quantum States Into Reality
  • Strange Signal From Decades Ago Hints at Hidden Oceans Orbiting Uranus

Space

  • JWST Gives Us Our Best Look Yet at Earth-Sized Exoplanet TRAPPIST-1b
  • Huge Amounts of Water on The Moon May Have Just Been Located
  • Uncanny Coincidence: Fast Radio Burst Detected After Gravitational Wave Event
  • Entire Planets Made of Dark Matter May Exist. Here’s How We Can Find Them.
  • Strange Signal From Decades Ago Hints at Hidden Oceans Orbiting Uranus

Physics

  • Extreme Horizons in Space Could Lure Quantum States Into Reality
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • JWST Gives Us Our Best Look Yet at Earth-Sized Exoplanet TRAPPIST-1b
  • Surprise! ChatGPT Turns Out to Be Terrible at Wordle
  • Huge Amounts of Water on The Moon May Have Just Been Located
  • Oldest Ichthyosaur Known to Science Discovered on Remote Arctic Island
  • Uncanny Coincidence: Fast Radio Burst Detected After Gravitational Wave Event

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.