Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

Hubble Spots a Fascinating Galactic Connection 200 Million Light-Years Away

November 8, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

Sometimes it’s tempting to imagine a supernatural hand behind the arrangement of celestial bodies.

But the Universe is big, huge even, and nature’s flow presents many fascinations.

So it is with the galactic triplet Arp 248, an arrangement of interacting galaxies that’s both visually and scientifically fascinating.

Arp 248 is a trio of small interacting galaxies around 200 million light-years away in the constellation Virgo.

The image shows two of Arp 248’s galaxies flanking another smaller unrelated galaxy in the background.

The galaxies are connected by a stream of stars, gas, and dust, created as the galaxies tug on one another gravitationally.

Galactic triplet Arp 248, with two large spiral galaxies connected by a tidal tail.
Known as Wild’s Triplet, Arp 248 has two galaxies connected by a tidal tail. A third, smaller unrelated spiral galaxy can be seen in the background. (ESA/Hubble & NASA, Dark Energy Survey/Department of Energy/Fermilab Cosmic Physics Center/Dark Energy Camera/Cerro Tololo Inter-American Observatory/NOIRLab/National Science Foundation/AURA Astronomy; J. Dalcanton)

Astronomers call the streams “tidal tails.” When dusty and gas-rich galaxies like Arp 248 merge, the merger frequently forms tails.

The tails are made of material from the outer spiral disks of the merging galaxies, and they host active star formation indicated by blue.

The top image is from an observing project examining two collections of unusual galaxies involving Halton Arp. Arp was an American astronomer who created the Atlas of Peculiar Galaxies in 1966.

The Atlas contains 338 galaxies chosen for their unusual shapes. He intended for it to highlight the variety of peculiar structures that galaxies take.

We now know these galaxies take such strange shapes because they’re interacting and potentially merging. Arp disagreed with that interpretation and said the unusual forms were due to ejections.

An image of Centaurus A, a galaxy with jets and lobes emanating from its black hole.
A composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole. (ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimeter); NASA/CXC/CfA/R.Kraft et al. (X-ray))

But in any case, Arp realized astronomers weren’t very knowledgeable about how galaxies change over time, and he intended that astronomers could use his Atlas to study galaxy evolution.

The second collection of unusual galaxies in the observing project is called A Catalog of Southern Peculiar Galaxies and Associations. It was published in 1987 by Arp and his colleague Barry Madore. The Catalog contains 25 different varieties of objects, including galaxies with tails.

Astronomers have expanded their knowledge of interacting galaxies, and galaxy mergers since the Atlas and the Catalog were published. We know that mergers play an important role in galaxy evolution.

As astronomers study interacting galaxies in more detail, they’re uncovering a new class of objects that they call “intergalactic star-forming objects” (ISFOs.) ISFOs are a broad class of objects that capture the different types that form when galaxies interact.

ISFOs can form due to tidal interactions and the ram-sweeping of material from interacting galaxies. They can also develop due to the inflow of gas and dust to the tails and through a combination of all these processes.

ISFOs can range in mass from super star clusters to what astronomers call “tidal dwarf galaxies” (TDGs.) A 2012 paper based on the Sloan Digital Sky Survey estimated that about 6 percent of dwarf galaxies could have tidal origins.

ISFOs are often bound gravitationally to the galaxies, but how many stay bound and for how long is still an open question.

Sometimes material from the tidal streams will flow back into the galaxies, triggering more star formation. The leftover material from all this interaction enriches the interstellar medium with dust and metals.

Four galaxies close together, a part of Stephan's Quintet.
In this image of Stephan’s Quintet, we see five galaxies, four of which interact. The galaxies are pulling and stretching one another. (NASA, ESA, CSA, and STScI)

Astronomers now think that about 25 percent of galaxies are currently merging with other galaxies. Even more of them are interacting gravitationally, if not merging, according to the Harvard Center for Astrophysics.

Our Milky Way galaxy is evidence of this, as it cannibalized gas and even stars from the Magellanic Clouds and the Sagittarius Dwarf Galaxy. And in several billions of years, the Milky Way and the Andromeda Galaxy will merge. Who knows what behemoth might arise from that event?

How supermassive black holes (SMBHs) grow so massive is also an open area of inquiry. Astrophysicists know that mergers are part of SMBH’s growth process, but there’s a lot they don’t know.

The Hubble Space Telescope’s Advanced Camera for Surveys (ACS) scrutinized this assortment of unusual interacting galaxies to lay the groundwork for more detailed study in the future.

The Hubble will examine some of these targets with its other instruments, and so will the James Webb Space Telescope and ALMA. Observing time on these telescopes is always in high demand, so this project will help astronomers allocate time better.

This article was originally published by Universe Today. Read the original article.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Ancient Siberian Bear Reveals an Unexpected Twist on Close Inspection
Radioactive Leak at Minnesota Nuclear Plant Revealed Months After Accident
Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
Scientists Think They’ve Cracked The Mystery of Europa’s Weird Rotating Ice Shell
Landmark UN Climate Report Delivers a Key Message: There’s Still Time to Act.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • ‘Horrifying’ Plastic Rocks Emerge in Remote Island Paradise
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
  • Planting This Could Feed Millions And Lock Away Tons of Carbon
  • Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.

Space

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
  • Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.

Physics

  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics
  • ‘Time Reflections’ Finally Observed by Physicists After Decades of Searching

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.