Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

Mysterious Dark Galaxy Emits No Visible Light, Scientists Say

February 10, 2023 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

Galaxies come in many different shapes and sizes, but the basic ingredients seem fairly consistent. There’s usually a big black hole at the center, a bunch of stars and gas, and a generous serving of dark matter that helps glue the whole thing together.

While dark matter is, well, dark, the stars, gas, and swirling core of heated material stand out with the radiant beauty of a city in the night.

However, one newly discovered dwarf galaxy located a mere 94 million light-years away is defying expectations. It’s named FAST J0139+4328, and it’s not emitting any optical light. In fact, it’s barely emitting any light at all.

FAST J0139+4328 appears to be what is known as a dark galaxy. Aside from a small smattering of stars, the galaxy seems to be made up almost entirely of dark matter. A paper describing the discovery has been accepted for publication in The Astrophysical Journal Letters, and is available on preprint server arXiv.

“These findings provide observational evidence that FAST J0139+4328 is an isolated dark dwarf galaxy,” write a team of astronomers led by Jin-Long Xu of the Chinese Academy of Sciences in Beijing. “This is the first time that an isolated dark galaxy has been detected in the nearby Universe.”

Dark matter is currently the leading explanation for a weird discrepancy between the amount of normal, or baryonic, matter observed in corners of the Universe and the strength of the gravity required to hold it together. Put simply, there’s just not enough baryonic matter to account for all the gravity. Galaxies are spinning so fast that they should fly apart without something else binding it all together.

Whatever is responsible for this extra gravity remains elusive. It doesn’t seem to interact with normal matter in any way other than through gravity; nor does it emit any form of radiation we can currently detect. We simply can’t see the source of this extra mass. Still, reserving a space for some kind of unknown material goes a long way towards resolving the problems we observe.

However, dark matter theory isn’t perfect either. One problems is a discrepancy between simulations of the dark matter distribution in the Universe and the number of dwarf galaxies we see out there orbiting larger galaxies. There are way fewer dwarf galaxies than the simulations suggest there ought to be. This is known as the dwarf galaxy problem.

It is possible we’re simply unable to detect some kinds of dwarf galaxy, such as those with very few stars, consisting primarily of gas and dark matter. Finding enough of them would help resolve the whole shortfall in dwarf galaxies.

Some candidate dark galaxies have been identified, but they are very close to other structures, which makes them hard to distinguish from blobs of debris ripped free by stronger gravitational forces.

An ideal dark galaxy candidate would be drifting by itself, isolated in space, where its identity could not be mistaken.

The location of FAST J0139+4328 in (a) optical, (b) near-infrared, (c) near-ultraviolet, and (d) mid-infrared. The yellow circles in a and b are foreground stars. (Xu et al., arXiv, 2023)

To search for such a galaxy, Xu and his colleagues used the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China. They used the telescope during gaps in its observation schedule as a “filler” project to conduct a search for the radio emission of large clouds of neutral atomic hydrogen (HI) gas in intergalactic space, looking for features consistent with a galaxy.

And they got a hit: the radio waves emitted by a cloud of HI 94 million light-years away were consistent with a rotating disk galaxy, without the optical light expected of one. Follow-up observations in infrared and ultraviolet revealed a faint smattering of stars.

All together, the data allowed the researchers to determine the properties of the galaxy, which they named FAST J0139+4328.

According to the team’s calculations, the galaxy has an upper limit of 690,000 solar masses’ worth of stars – and it contains 83 million solar masses’ worth of HI. The total baryonic mass of the galaxy clocks in at around 110 million solar masses.

This, however, is just a drop in the bucket of the galaxy’s total mass. The team was able to calculate FAST J0139+4328’s rotation speed, and from that its total mass, which came in at 5.1 billion solar masses. That would mean that the galaxy is made up of around 98 percent dark matter.

It’s expected that other scientists will attempt to confirm the nature of the object. In which case, it may turn out to be something different, as so happened with a galaxy called Dragonfly 44. In 2016 the galaxy was found to consist of 99.99 percent dark matter. Four years later, however, astronomers determined that Dragonfly 44 wasn’t so abnormal.

But if it is validated as a dark galaxy, FAST J0139+4328 will have some very interesting things to tell us about the Universe around us.

“This is the first time that a gas-rich isolated dark galaxy has been detected in the nearby Universe,” the researchers write.

“In addition, a galaxy is assumed to form from gas, which cools and turns into stars at the center of a halo. FAST J0139+4328 has a rotating disk of gas and is dominated by dark matter, but is starless, implying that this dark galaxy may be in the earliest stage of the galaxy formation.”

The research has been accepted into The Astrophysical Journal Letters, and is available on arXiv.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Tasmanian Tiger ‘Probably’ Survived to 1980s or Even Later, Study Claims
Planting This Could Feed Millions And Lock Away Tons of Carbon
This Incredible Dinosaur Had The Longest Neck Known to Science
‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
The ‘Rapunzel’ Virus Has a Freakishly Long Tail, And We Finally Know Why

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • Tasmanian Tiger ‘Probably’ Survived to 1980s or Even Later, Study Claims
  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • ‘Horrifying’ Plastic Rocks Emerge in Remote Island Paradise
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized

Space

  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized

Physics

  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics
  • ‘Time Reflections’ Finally Observed by Physicists After Decades of Searching

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • Tasmanian Tiger ‘Probably’ Survived to 1980s or Even Later, Study Claims
  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.