Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

New Study Asks: If Earth Were an Exoplanet, Could Aliens Tell It Has Life?

October 16, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

How would Earth appear to alien astronomers? What would their observations tell them about Earth if they were searching the heavens for signs of habitability like we are? It’s a fun thought experiment.

But the experiment is more than just fun: It’s scientifically instructive. In many ways, it’s easier to study our planet and how it appears and then extrapolate those results as far as they go.

A new study shows that finding evidence of life on Earth may depend on the season alien astronomers are observing.

Almost nothing in space science generates as much widespread excitement as finding a potentially habitable planet. The headlines spread like a virus through the Internet with only minor mutations from site to site.

So far, we’ve only got glimpses and hints of exoplanets that might be able to support life. We’ve got a long way to go.

It’ll take a lot of science and innovative reasoning before we ever get to a point where we can say “Yes. This distant planet is habitable.”

A new study might be part of getting to that point by examining Earth’s outward appearance through different seasons.

The study is “Earth as an Exoplanet: II. Earth’s Time-Variable Thermal Emission and its Atmospheric Seasonality of Bio-Indicators.” It’s available at the pre-press site arXiv.org, and the lead author is Jean-Noel Mettler. Mettler is a doctoral student at the ETH Zurich Department of Physics, studying Exoplanets and Habitability.

The historical roots of this type of research go back to the [19]70s when spacecraft were visiting the planets in our Solar System. Pioneer 10 and 11 ( Jupiter and Saturn) and Voyager 1 and 2 (Jupiter, Saturn, Uranus, and Neptune) performed flybys of some of Earth’s siblings.

It was the beginning of more in-depth characterization of other planets. By measuring UV and infrared, scientists learned a lot about the properties of planetary atmospheres, surfaces, and overall energy balance.

But today, we live in the time of exoplanet science. We’re extending the same type of observations to planets light years away.

The bewildering variety of planets we’ve discovered are interesting in their own right, but if there’s a Holy Grail in exoplanet science, it’s got to be habitability. We want to know if anything else lives somewhere out there.

As our technology advances, astronomers are getting more powerful instruments to study distant planets with. A technological civilization elsewhere in the Milky Way would likely do the same thing.

This study examines Earth’s infrared emission spectrum, the effect of different observation geometries on those spectra, and how the observations would appear to a much more distant observer.

The researchers also assessed how the changing seasons impact the spectra. “We learned that there is significant seasonal variability in Earth’s thermal emission spectrum, and the strength of spectral features of bio-indicators, such as N2O, CH4, O3, and CO2, depends strongly on both season and viewing geometry.”

The study looked at four different observing geometries: one each centered on the North and South poles, one on the African equatorial, and one on the Pacific equatorial.

The spectra were observed with the Atmospheric Infrared Sounder aboard NASA’s Aqua satellite.

The researchers found that there’s no single, representative sample of Earth’s thermal emissions spectrum. The seasonal changes make it impossible.

“Instead,” the paper states, “there is significant seasonal variability in Earth’s thermal emission spectrum, and the strength of biosignature absorption features depends strongly on both season and viewing geometry.”

The researchers also found thermal emissions varied greatly by observing geometry. The variability in readings was much greater over time above land masses than above oceans. The African Equatorial View and the North Pole view were centered on land masses and showed greater variability.

“Specifically, the northern hemisphere pole-on view (NP) and the Africa-centered equatorial view (EqA) showed annual variabilities of 33 percent and 22 percent at Earth’s peak wavelength at ≈ 10.2 µm, respectively,” the paper concluded.

But the thermal stability of oceans meant less variability. “On the other hand, viewing geometries with a high sea fraction, such as the southern hemisphere pole-on (SP) and the Pacific-centered, equatorial view (EqP), show smaller annual variabilities due to the large thermal inertia of oceans.”

The overall takeaway from this research is that a living, dynamic planet like Earth can’t be characterized by a single thermal emissions spectrum. There’s too much going on here on Earth, and this study didn’t even delve into clouds and their effect.

“Future work is required to investigate how cloud fraction, cloud seasonality, and their thermodynamical phase properties affect the detection and result of atmospheric seasonality,” the authors write.

The authors say that some variations are slight and will be difficult to untangle when observing distant planets. Dirty data could obscure them.

“Even for Earth and especially for equatorial views, the variations in flux and strength of absorption features in the disk-integrated data are small and typically ≈ 10 percent. Disentangling these variations from the noise in future exoplanet observations will be a challenge.”

Earth’s complexity makes it a difficult target for this type of observation, and the authors acknowledge it.

“This complexity makes remote characterization of planetary environments very challenging,” they explain.

“Using Earth as our test bed, we learned that a planet and its characteristics cannot be described by a single thermal emission spectrum, but multi-epoch measurements, preferably in both reflected light and thermal emission, are required.”

Most of our exoplanet detections are based on a few transits of those planets in front of their stars. That has its limitations.

The James Webb Space Telescope aims to study the spectra of some exoplanets with more power, so we’re approaching the day when we’ll need to understand better what we’re seeing.

This study tested a new method of observing exoplanets in mid-Infrared rather than in reflective light. Even though there’s seasonal variation and observing geometry variation, “… we find that our result is relatively insensitive to diurnal or seasonal effects, unlike in the case for reflected light measurements.”

Mettler and his co-researchers think their method can contribute unique data to exoplanet observations in reflected light.

“We, therefore, conclude that observing exoplanets with thermal emission could provide unique and complementary information that is necessary for the characterization of terrestrial planets around other stars.”

This article was originally published by Universe Today. Read the original article.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Scientist Accidentally Discovers The Oldest Brain of Any Vertebrate
A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
AI Predicts We’ll Breach Our Climate Goal in Just 10 Years
Could ‘The Last of Us’ Ever Happen? The Real Risks of a Fungus Pandemic
Incredible Footage Shows Planets Circling a Star Light-Years Away

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • A Hidden Food Web Exists in The Desert, And It Thrives on Death
  • It’s Possible Neanderthals Evolved So They Wouldn’t Smell Their Own Stink, Study Finds
  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • Bar Graphs Induce a Hidden Bias in Interpretation, Experiment Shows
  • This Small Australian Marsupial Is Quite Literally Dying For Sex
  • ‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • An Incredible Thing Happens When Dolphins And Humans Team Up

Space

  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • Stunning Green Comet Will Be Closest to Earth Today, at Peak Brightness

Physics

  • A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
  • This Physicist Says Electrons Spin in Quantum Physics After All. Here’s Why
  • Physicists Break Record Firing a Laser Down Their University Corridor
  • Scientists Have Built a Macroscopic Tractor Beam Using Laser Light
  • Firing a Laser Into The Sky Can Divert Lightning, Experiment Shows

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • A Hidden Food Web Exists in The Desert, And It Thrives on Death
  • It’s Possible Neanderthals Evolved So They Wouldn’t Smell Their Own Stink, Study Finds
  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.