Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

Super-Rare Star System Is a Giant Cosmic Accident Waiting to Happen

February 5, 2023 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

For the first time, astronomers have positively identified a binary system that is destined to one day end up as a kilonova – the explosive result of a neutron star collision.

And, ironically, the key ingredient to this eventual fate is a pair of failed, fizzled supernovae. This phenomenon is thought to be so rare that there are only an estimated 10 such binary systems in the entire Milky Way. A closer study of this system should help scientists understand how these insane events evolve.

“For quite some time, astronomers speculated about the exact conditions that could eventually lead to a kilonova,” says astronomer André-Nicolas Chené of NOIRLab.

“These new results demonstrate that, in at least some cases, two sibling neutron stars can merge when one of them was created without a classical supernova explosion.”

Neutron star collisions are rare, but they play an important role in seeding the Universe with heavy elements such as gold, platinum, and uranium. These elements can’t be created inside stellar cores; the energy required for the stellar nucleosynthesis of elements heavier than iron is greater than the energy this nucleosynthesis produces, resulting in a messy end for the star.

Instead, these elements are formed in energetic events, such as kilonovae: we have evidence of this from GW170817, the history-making neutron star collision observed by telescopes around the world. But these events are rare and, therefore, pretty mysterious. We’ve only seen a scant few neutron star mergers, and never before found a system destined to become one.

Enter a binary system called CPD-29 2176, consisting of a neutron star and a type of massive blue star called a Be star, located around 11,400 light-years from Earth. Be stars have features in their light that indicate the presence of material around them in the form of a disk.

They often also appear in binary systems with neutron stars, emitting X-rays as the neutron star passes through the disk surrounding the Be star.

When a bright X-ray flash was observed from the same part of the sky as the Be star in CPD-29 2176, astronomers Noel Richardson and Clarissa Pavao of Embry-Riddle Aeronautical University took a closer look, ultimately identifying a portion of light not emitted by the Be star. That was the neutron star.

They were also able to calculate the orbit of the binary. And this is where things got interesting. Because that orbit was unusually circular, as opposed to the more elliptical orbits usually seen in such binaries.

This was the smoking gun that led the researchers to conclude that the neutron star was born in a “dud” supernova – also known as an ultra-stripped supernova.

Usually, when a massive star goes supernova, it blasts off its outer material in a spectacular explosion, while the remaining core collapses down into a neutron star – an ultradense object up to about 2.4 times the mass of the Sun, packed into a sphere just 20 kilometers (12 miles) across.

In an ultra-stripped supernova, there’s not enough outer material left to be exploded out into space. Instead, the core collapses with little fanfare. This seems to have been the case with CPD-29 2176.

“The star was so depleted that the explosion didn’t even have enough energy to kick the orbit into the more typical elliptical shape seen in similar binaries,” Richardson says.

So where did all that material go? As the neutron star reached the end of its life, it became puffy, putting its outer envelope within the gravitational reach of the Be star, which slurped it right up. By the time the star collapsed into a neutron star, it had been stripped right down, depriving it of the material that would have otherwise generated supernova fireworks.

Eventually, the Be star will also end its life as a neutron star, resulting in a neutron star binary in the decaying orbit that will one day produce a neutron star collision, the two merging to produce either a bigger neutron star, or a black hole.

“The current neutron star would have to form without ejecting its companion from the system. An ultra-stripped supernova is the best explanation for why these companion stars are in such a tight orbit,” Richardson says.

“To one day create a kilonova, the other star would also need to explode as an ultra-stripped supernova so the two neutron stars could eventually collide and merge.”

That day is a long way off, however. The Be star still has at least a million years left before its inevitable transformation. And the slow inspiral to the eventual merger could take millions more. But, with the identification of CPD-29 2176, astronomers have a new piece of the puzzle, and one that might help identify other such systems among the billions of stars in the Milky Way.

“This system reveals that some neutron stars are formed with only a small supernova kick,” Richardson says.

“As we understand the growing population of systems like CPD-29 2176 we will gain insight into how calm some stellar deaths may be and if these stars can die without traditional supernovae.”

The research has been published in Nature.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Notre Dame’s Fire Reveals a Major Surprise Hidden in Its Architecture
This Adaptation Allowed Dinosaurs to Not Only Survive But to Dominate The Planet
Baby Planets May Do Something Sneaky With Their Water to Protect It From Unruly Stars
Rare Cosmic Event Will See 5 Planets Align in The Sky. Here’s How to Watch.
This Extremely Weird Galaxy Is Blasting Plasma at Its Friend

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • Tasmanian Tiger ‘Probably’ Survived to 1980s or Even Later, Study Claims
  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • ‘Horrifying’ Plastic Rocks Emerge in Remote Island Paradise
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized

Space

  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized

Physics

  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics
  • ‘Time Reflections’ Finally Observed by Physicists After Decades of Searching

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • Tasmanian Tiger ‘Probably’ Survived to 1980s or Even Later, Study Claims
  • NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field
  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.