Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

The Milky Way’s Halo of Stars Isn’t The Neat Sphere Astronomers Expected It to Be

November 21, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

Step outside of the Milky Way for a moment and you might notice the bright disc of stars we call home has a weird warp to it. Now it seems the rest of our galaxy is also a little off-kilter.

A new map of the stars above and below the galactic plane shows its galactic halo – the diffuse globe of gas, dark matter, and stars that surrounds spiral galaxies – is also wonky. Rather than the nice round sphere astronomers expected, the Milky Way’s halo is a wibbly ellipsoid whose three axes are all different lengths.

“For decades, the general assumption has been that the stellar halo is more or less spherical and isotropic, or the same in every direction,” says astronomer Charlie Conroy of the Harvard & Smithsonian Center for Astrophysics (CfA).

“We now know that the textbook picture of our galaxy embedded within a spherical volume of stars has to be thrown out.”

Determining the shape of our galaxy is really difficult to do. Imagine trying to figure out the shape of a vast lake while you’re bobbing around in the middle of it. It’s only in recent years, with the launch of the European Space Agency’s Gaia telescope in 2013, that we’ve gained a detailed understanding of the three-dimensional shape of our galaxy.

Gaia shares Earth’s orbit around the Sun. Changes in the telescope’s position in the Solar System allows it to measure the parallax of objects in the Milky Way, obtaining the most accurate measurements to date for calculating the positions and movements of thousands of distant stars.

Thanks to this data, we now know that the Milky Way’s disk is warped and bent. We also know that the Milky Way has repeatedly engaged in acts of galactic cannibalism, one of the most prominent of which seems to have been a collision with a galaxy we call the Gaia Sausage, or Gaia Enceladus, around 7 to 10 billion years ago.

This collision, scientists believe, created the Milky Way’s stellar halo. The Gaia Sausage tore apart as it encountered our galaxy, its distinct population of stars scattering through the Milky Way’s halo.

Led by astronomer and PhD student Jiwon “Jesse” Han of CfA, a team of scientists set out to gain a better understanding of the galactic halo and the Gaia Sausage’s role in it.

“The stellar halo is a dynamic tracer of the galactic halo,” says Han. “In order to learn more about galactic haloes in general, and especially our own galaxy’s galactic halo and history, the stellar halo is a great place to start.”

Unfortunately Gaia’s data on the chemical abundances of halo stars beyond certain distances isn’t overly reliable. Stellar populations can be tied together by their chemical abundances, making it important information for mapping the relationship between the halo’s stars.

So the researchers added data from a survey called Hectochelle in the Halo at High Resolution, or H3; a ground-based survey that has collected, among other characteristics, chemical abundance data on thousands of stars in the Milky Way’s stellar halo.

With this data, the researchers inferred the density profile of the stellar population of the Milky Way’s halo. They found that the best fit for their data was a football-shaped halo, tilted 25 degrees with respect to the galactic plane.

The inferred dimensions of the halo. (Han et al., AJ, 2022)

This fits with previous studies that found the stars in the Milky Way’s halo occupy a triaxial ellipsoid formation (although the specifics vary a little). It also fits with the theory that the Gaia Sausage created, or at least played a huge role in creating, the Milky Way’s halo. The skewiff shape of the halo suggests that the two galaxies collided at an angle.

The researchers also found two pileups of stars at significant distances from the galactic center. These collections, they found, represent the apocenters of the initial stellar orbits around the galactic center – the farthest distance the stars travel in their elongated, elliptical orbits.

Just as an orbiting body speeds up on reaching the point closest to its center of attraction, or ‘pericenter’, the apocenter is a point of slow-down. When the Gaia Sausage met with the Milky Way, its stars were flung out into two wild orbits, slowing down at the apocenters – to the point of stopping, and just making that location their new home.

However, this was a very long time ago, long enough that the odd shape should have resolved itself long ago, settling back into a sphere. The strong tilt suggests that the halo of dark matter binding the Milky Way – a mysterious mass responsible for excess gravity in the Universe – is also highly tilted.

So, while it appears we have some new and exciting answers, we also have some new and exciting questions. Ongoing and future surveys, the researchers said, should provide even stronger constraints on the shape of the halo to help figure out how our galaxy evolved.

“These are such intuitively interesting questions to ask about our galaxy: ‘What does the galaxy look like?’ and ‘What does the stellar halo look like?’,” Han says.

“With this line of research and study in particular, we are finally answering those questions.”

The research has been published in The Astronomical Journal.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

The First Stars May Have Been Heavier Than 100,000 Suns
Could ‘The Last of Us’ Ever Happen? The Real Risks of a Fungus Pandemic
‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog
AI Predicts We’ll Breach Our Climate Goal in Just 10 Years
New Prototype Device Generates Hydrogen From Untreated Seawater

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • Bar Graphs Induce a Hidden Bias in Interpretation, Experiment Shows
  • This Small Australian Marsupial Is Quite Literally Dying For Sex
  • ‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • An Incredible Thing Happens When Dolphins And Humans Team Up
  • A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
  • New Prototype Device Generates Hydrogen From Untreated Seawater
  • Wildfire Destruction in The Western US Has Doubled in Just 10 Years

Space

  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • Stunning Green Comet Will Be Closest to Earth Today, at Peak Brightness
  • A Mysterious Whirlpool Appeared Over Hawaii, And It Could Be Because of SpaceX

Physics

  • A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
  • This Physicist Says Electrons Spin in Quantum Physics After All. Here’s Why
  • Physicists Break Record Firing a Laser Down Their University Corridor
  • Scientists Have Built a Macroscopic Tractor Beam Using Laser Light
  • Firing a Laser Into The Sky Can Divert Lightning, Experiment Shows

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • Bar Graphs Induce a Hidden Bias in Interpretation, Experiment Shows
  • This Small Australian Marsupial Is Quite Literally Dying For Sex
  • ‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.