Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

Two Black Holes Met by Chance, And It Created Something Never Seen Before

November 24, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

The ripples in space-time generated by colliding black holes have taught us a lot about these enigmatic objects.

These gravitational waves encode information about black holes: their masses, the shape of their inward spiral towards each other, their spins, and their orientations.

From this, scientists ascertained that most of the collisions we’ve seen have been between black holes in binary systems. The two black holes started as a binary of massive stars that turned into black holes together, then spiraled in and merged.

Of the 90 or so mergers detected so far, however, one stands out as very peculiar. Detected in May 2019, GW19052 emitted space-time ripples like no other.

“Its morphology and explosion-like structure are very different from previous observations,” says astrophysicist Rossella Gamba of the University of Jena in Germany.

She adds, “GW190521 was initially analyzed as the merger of two rapidly rotating heavy black holes approaching each other along almost circular orbits, but its special features led us to propose other possible interpretations.”

In particular, the short, sharp duration of the gravitational wave signal was challenging to explain.

Gravitational waves are generated by the actual merger of two black holes, like ripples from a rock dropped into a pond. But they’re also generated by the binary inspiral, and the intense gravitational interaction sends out weaker ripples as two black holes move inexorably closer.

frameborder=”0″ allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen>

“The shape and brevity – less than a tenth of a second – of the signal associated with the event lead us to hypothesize an instantaneous merger between two black holes, which occurred in the absence of a spiraling phase,” explains astronomer Alessandro Nagar of the National Institution for Nuclear Physics in Italy.

There’s more than one way to end up with a pair of black holes gravitationally interacting.

The first is that the two were together for a long time, perhaps even from the formation of baby stars from the same piece of molecular cloud in space.

The other is when two objects moving through space pass each other closely enough to get snagged gravitationally in what is known as a dynamical encounter.

This is what Gamba and her colleagues thought might have happened with GW190521, so they designed simulations to test their hypothesis. They smashed together pairs of black holes, tweaking parameters such as trajectory, spin, and mass, to try to reproduce the weird gravitational wave signal detected in 2019.

Their results suggest that the two black holes did not start out in a binary but were caught in each other’s gravitational web, tumbling past each other twice on a wild, eccentric loop before slamming together to form one larger black hole. And neither of the black holes in this scenario was spinning.

“By developing precise models using a combination of state-of-the-art analytical methods and numerical simulations, we found that a highly eccentric merger in this case explains the observation better than any other hypothesis previously put forward,” says astronomer Matteo Breschi of the University of Jena.

“The probability of error is 1:4,300!”

This scenario, the team says, is more likely in a densely populated region of space, such as a star cluster, where such gravitational interactions are more likely.

This tracks with previous discoveries about GW190521. One of the black holes in the merger was measured at around 85 times the mass of the Sun.

According to our current models, black holes over 65 solar masses can’t form from a single star; the only way we know a black hole of that mass can form is through mergers between two lower-mass objects.

The work of Gamba and her colleagues found that the masses of the two black holes in the collision sit at around 81 and 52 solar masses; that’s slightly lower than previous estimates, but one of the black holes is still outside the single star core collapse formation pathway.

It’s still unclear if our models need tweaking, but hierarchical mergers – whereby larger structures form through the continuous merging of smaller objects – are more likely in a cluster environment with a large population of dense objects.

Dynamical encounters between black holes are considered pretty rare, and the gravitational wave data collected by LIGO and Virgo to date would seem to support this. However, rare doesn’t mean impossible, and the new work suggests that GW190521 may be the first we’ve detected.

And a first means that there could be more in the years ahead. The gravitational wave observatories are currently being upgraded and maintained but will come online again in March 2023 for a new observing run. This time, LIGO’s two detectors in the US and the Virgo detector in Italy will be joined by KAGRA in Japan for even more observing power.

More detections like GW190521 would be amazing.

The research has been published in Nature Astronomy.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

A Billion-Dollar Biotech Company Plans to Bring The Dodo Back to Life
Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
New Prototype Device Generates Hydrogen From Untreated Seawater
Are Your Cats Playing or Fighting? Researchers Think They Can Tell The Difference
‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • Bar Graphs Induce a Hidden Bias in Interpretation, Experiment Shows
  • This Small Australian Marsupial Is Quite Literally Dying For Sex
  • ‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • An Incredible Thing Happens When Dolphins And Humans Team Up
  • A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
  • New Prototype Device Generates Hydrogen From Untreated Seawater
  • Wildfire Destruction in The Western US Has Doubled in Just 10 Years

Space

  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • Stunning Green Comet Will Be Closest to Earth Today, at Peak Brightness
  • A Mysterious Whirlpool Appeared Over Hawaii, And It Could Be Because of SpaceX

Physics

  • A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
  • This Physicist Says Electrons Spin in Quantum Physics After All. Here’s Why
  • Physicists Break Record Firing a Laser Down Their University Corridor
  • Scientists Have Built a Macroscopic Tractor Beam Using Laser Light
  • Firing a Laser Into The Sky Can Divert Lightning, Experiment Shows

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • Bar Graphs Induce a Hidden Bias in Interpretation, Experiment Shows
  • This Small Australian Marsupial Is Quite Literally Dying For Sex
  • ‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.