Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

Wild New Study Reveals Neutron Stars Are Actually Like a Box of Chocolates

November 16, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

Life isn’t really like a box of chocolates, but it seems that something out there is. Neutron stars – some of the densest objects in the Universe – can have structures very similar to chocolates, with either gooey or hard centers.

What kinds of particle configurations those centers consist of is still unknown, but new theoretical work revealing this surprising result could put us a step closer to understanding the strange guts of these dead stars, and the wild extremes possible in our Universe.

Neutron stars are pretty incredible. If we consider black holes to be objects of immense (if not infinite) concentrations of matter, neutron stars win second place in the Universe’s Most Dense Award. Once a star with a mass of around 8 to 30 times that of the Sun’s runs out of matter to fuse in its core, it’s no longer supported by heat’s outward pressure, allowing the core to collapse under gravity as its shell of surrounding gases drift off into space.

The resulting neutron star has a reduced mass of up to around 2.3 times the mass of the Sun, but it’s squeezed into a sphere around just 20 kilometers (12 miles) across. These things are capital-letters DENSE – and what exactly happens to matter under such mind-blowing pressures is something scientists are dying to know.

Some studies propose that nuclei crowd together until they form shapes that resemble pasta. Others suggest even deeper inside the star, pressures become so extreme that atomic nuclei cease to exist altogether, condensing into a “soup” of quark matter.

Now, theoretical physicists led by Luciano Rezzolla of Goethe University in Germany have discovered how neutron stars might be akin to chocolates with different fillings.

The team combined theoretical nuclear physics and astrophysical observations to develop a set of more than a million ‘equations of state’. These are equations that relate the pressure, temperature, and volume of a given system, in this case a neutron star.

Using these, the team developed a scale-dependent description of the speed of sound in neutron stars. And this is where it gets interesting. The speed of sound in a given object, be it a star or a planet, can reveal the structure of its interior.

Just as seismic waves on Earth and Mars propagate differently through materials of different density, revealing structures and layers, acoustic waves that bounce around in stars can reveal what’s going on inside them.

When the team used their equations of state to study the speed of sound in neutron stars, their structures were not uniform across the board. Rather, the neutron stars on the lower end of the mass range, below 1.7 times the mass of the Sun, seemed to have a squishy mantle and harder core, while those above 1.7 solar masses had a hard mantle and a squishy core.

“This result is very interesting because it gives us a direct measure of how compressible the center of neutron stars can be,” Rezzolla says.

“Neutron stars apparently behave a bit like chocolate pralines: light stars resemble those chocolates that have a hazelnut in their center surrounded by soft chocolate, whereas heavy stars can be considered more like those chocolates where a hard layer contains a soft filling.”

This seems to fit with both the nuclear pasta and quark soup interpretations of neutron star innards, but it also provides new information that could help model neutron stars across a range of masses in future work.

This could also explain how, regardless of their masses, all neutron stars have roughly the same diameter of around 20-kilometers.

“Our extensive numerical study not only allows us to make predictions for the radii and maximum masses of neutron stars, but also to set new limits on their deformability in binary systems, that is, how strongly they distort each other through their gravitational fields,” says physicist Christian Ecker of the University of Goethe.

“These insights will become particularly important to pinpoint the unknown equation of state with future astronomical observations and detections of gravitational waves from merging stars.”

Chocolate praline nuclear pasta quark soup, anyone?

The research has been published in two papers in The Astrophysical Journal Letters. They can be found here and here.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
Baby Planets May Do Something Sneaky With Their Water to Protect It From Unruly Stars
LIVE: Newly Detected Asteroid Is Passing Earth Closer Than The Moon Right Now
AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
‘Horrifying’ Plastic Rocks Emerge in Remote Island Paradise

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • ‘Horrifying’ Plastic Rocks Emerge in Remote Island Paradise
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
  • Planting This Could Feed Millions And Lock Away Tons of Carbon
  • Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.

Space

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
  • Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.

Physics

  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics
  • ‘Time Reflections’ Finally Observed by Physicists After Decades of Searching

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.