Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

Wormholes May Already Have Been Detected, Physicists Say

November 15, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

Hypothetical bridges connecting distant regions of space (and time) could more or less look like garden variety black holes, meaning it’s possible these mythical beasts of physics have already been seen.

Thankfully however, if a new model proposed by a small team of physicists from Sofia University in Bulgaria is accurate, there could still be a way to tell them apart.

Play around with Einstein’s general theory of relativity long enough, it’s possible to show how the spacetime background of the Universe can form not only deep gravitational pits where nothing escapes – it can form impossible mountain peaks which can’t be climbed.

Unlike their dark cousins, these glowing hills would shun anything that drew near, potentially belching out streams of particles and radiation that had no hope of ever turning back.

Setting aside the distinct possibility the Big Bang looks just like one of these ‘white holes‘, nothing of it’s like has ever been observed. Nonetheless, they remain an interesting concept for exploring the edges of one of the greatest theories in physics.

In the 1930s, a colleague of Einstein’s named Nathan Rosen showed there was nothing to say the deeply curved spacetime of a black hole couldn’t connect to the steep peaks of a white hole to form some kind of bridge.

In this corner of physics, our everyday expectations on distance and time go out the window, meaning such a theoretical link could traverse vast stretches of the cosmos.

Under the right circumstances, it might even be possible for matter to ride this cosmic tube and come out the other end with its information more or less intact.

So to determine what this black hole with a butthole might look like to observatories like the Event Horizon Telescope, the Sofia University team developed a simplified model of a wormhole’s ‘throat’ as a magnetized ring of fluid, and made various assumptions on how matter would circle it prior to being swallowed.

Particles caught up in this furious maelstrom would produce powerful electromagnetic fields that would roll and snap in predictable patterns, polarizing any light emitted by the heated material with a clear signature. It was the tracing of polarized radio waves that gave us the first stunning images of M87* in 2019, and Sagittarius A* earlier this year.

A typical wormhole’s smoking hot lips, it turns out, would be hard to distinguish from the polarized light emitted by the swirling disc of chaos surrounding a black hole.

By that logic, M87* could very well be a wormhole. In fact, wormholes could be lurking at the end of black holes everywhere, and we would have no easy way of knowing.

That’s not to say there’s no way of knowing at all.

If we were to strike it lucky and stitch together an image of a candidate wormhole as seen indirectly through a decent gravitational lens, subtle properties that distinguish wormholes from black holes just might become apparent.

This would require a conveniently placed mass in between us and the wormhole to distort its light sufficiently to magnify the small differences, of course, but it would at least give us a means of confidently spotting which dark patches of emptiness have a back exit.

There is one other means, one that also requires a good dose of fortune. Were we to spot a wormhole at the perfect angle, light traveling across its gaping entrance towards us would have its signature enhanced even further, giving us a clearer indication of a gateway through the stars and beyond.

Further modeling could reveal other characteristics of light waves that help sift wormholes out of the night sky without the need of lensing or perfect angles, a possibility the researchers are now turning their attention to.

Putting further constraints on the physics of wormholes could reveal new avenues for exploring not just general relativity, but the physics that describes the behavior of waves and particles.

Beyond that, lessons learned from predictions such as these could reveal where general relativity breaks down, opening a few holes of its own to make bold new discoveries that could give us a whole new way of seeing the cosmos.

This research was published in Physical Review D.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Rare Cosmic Event Will See 5 Planets Align in The Sky. Here’s How to Watch.
Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
Notre Dame’s Fire Reveals a Major Surprise Hidden in Its Architecture

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • ‘Horrifying’ Plastic Rocks Emerge in Remote Island Paradise
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
  • Planting This Could Feed Millions And Lock Away Tons of Carbon
  • Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.

Space

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • Scientists Discover RNA Component Buried in The Dust of an Asteroid
  • Risk of Giant Asteroids Hitting Earth Could Be Worse Than We Realized
  • Satellites Pose ‘Unprecedented Global Threat’, Scientists Warn. Here’s Why.

Physics

  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics
  • ‘Time Reflections’ Finally Observed by Physicists After Decades of Searching

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • ‘Giant Hole’ in The Sun Predicted to Unleash Stunning Light Show Across US
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • Strange Acceleration of Mysterious Interstellar Visitor Finally Explained
  • AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.