Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Tech

A Single Laser Transmitted a Second’s Worth of Internet Traffic in Record Time

October 25, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

Scientists continue to blow through data transmission records, with the fastest transmission of information between a laser and a single optical chip system now set at 1.8 petabits per second. That’s well in excess of the amount of traffic passing across the entire internet each second.

Here’s another comparison: the average broadband download speed in the US is 167 megabits per second. You need 1,000 megabits to get to a gigabit, and then 1 million gigabits to get up to 1 petabit.

No matter how you present it, 1.8 petabits is a serious amount of data to transmit in a second.

The supercharged data transfer system is built around a custom-design optical chip, which uses the light from a single infrared laser and splits it into hundreds of frequencies. The frequencies are isolated at fixed distances from each other, like teeth in a comb – hence the name for this setup, which is a frequency comb.

Each ‘tooth’ on a frequency comb can send its own burst of data, which is how the huge transmission rates are achieved. Using more conventional means, around a thousand lasers would be needed to carry the same number of 1s and 0s.

“What is special about this chip is that it produces a frequency comb with ideal characteristics for fiber-optical communications,” says nanoscientist Victor Torres Company from Chalmers University of Technology in Sweden.

“It has high optical power and covers a broad bandwidth within the spectral region that is interesting for advanced optical communications.”

To achieve the feat, the researchers split the fiber-optic cable into 37 distinct core sections, and then each section was split into 223 different frequency slices – the teeth on the comb. Having so much data sent in parallel was crucial to achieving the record rate.

The actual data itself was encoded into the light signals using a process called modulation, which adjusts the height, strength, rhythm, and directions of light waves to store the 1s and 0s making up digital data.

For now this is just a proof of concept, not least because computers aren’t capable of generating or receiving so much data at once. In the case of this piece of research, artificial ‘dummy’ data was used to make sure the system worked as intended.

What’s more, extra components – including data encoding devices – need to be incorporated into the chip. Once this is done though, the researchers say, the resulting system will be much faster and less of a power draw than what we have currently.

“Our solution provides a potential for replacing hundreds of thousands of the lasers located at Internet hubs and data centers, all of which guzzle power and generate heat,” says electrical engineer Leif Katsuo Oxenløwe from the Technical University of Denmark.

“We have an opportunity to contribute to achieving an Internet that leaves a smaller climate footprint.”

Through the use of a computational model, the researchers were also able to determine that there’s substantial potential when it comes to scaling up the system – even higher data transmission rates should be possible in the future.

By further splitting the light frequencies and further amplifying the signals produced, rates of up to 100 petabits per second are feasible, the models show. All this can be done without losing the reliability of the data.

Getting up to that stage is going to depend on improvements in other areas of computing, and in internet infrastructure, but the underlying technologies – lasers, optical fiber – aren’t too far away from what we’re already using.

“The more components we can integrate in the chip, the more efficient the whole transmitter will be,” says Katsuo Oxenløwe. “It will be an extremely efficient optical transmitter of data signals.”

The research has been published in Nature Photonics.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

It’s Possible Neanderthals Evolved So They Wouldn’t Smell Their Own Stink, Study Finds
‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog
The Mysterious Asymmetry of Jupiter’s Asteroids May Finally Be Explained
A Hidden Food Web Exists in The Desert, And It Thrives on Death
Embers of an Ancient Inferno Pinpoint The Worst Extinction in Earth’s History

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • A Hidden Food Web Exists in The Desert, And It Thrives on Death
  • It’s Possible Neanderthals Evolved So They Wouldn’t Smell Their Own Stink, Study Finds
  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • Bar Graphs Induce a Hidden Bias in Interpretation, Experiment Shows
  • This Small Australian Marsupial Is Quite Literally Dying For Sex
  • ‘Polluted Realism’: How Monet’s Art Mirrors The Evolution of Smog
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • An Incredible Thing Happens When Dolphins And Humans Team Up

Space

  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away
  • The First Stars May Have Been Heavier Than 100,000 Suns
  • Stunning Green Comet Will Be Closest to Earth Today, at Peak Brightness

Physics

  • A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
  • This Physicist Says Electrons Spin in Quantum Physics After All. Here’s Why
  • Physicists Break Record Firing a Laser Down Their University Corridor
  • Scientists Have Built a Macroscopic Tractor Beam Using Laser Light
  • Firing a Laser Into The Sky Can Divert Lightning, Experiment Shows

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • A Hidden Food Web Exists in The Desert, And It Thrives on Death
  • It’s Possible Neanderthals Evolved So They Wouldn’t Smell Their Own Stink, Study Finds
  • We Can Now Hear The ‘Sound’ of One of The Most Beautiful Stars
  • Astronomers Studied More Than 5,000 Black Holes to Figure Out Why They Twinkle
  • Astronomers Find What May Be a Habitable World 31 Light-Years Away

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.