Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Tech

Scientists Just Invented an Entirely New Way to Refrigerate Things

January 8, 2023 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

Say hello to ionocaloric cooling: a new way to lower the mercury that has the potential to replace existing methods with something that is safer and friendlier to the planet.

Typical refrigeration systems transport heat away from a space via a gas that cools as it expands some distance away. As effective as this process is, some of the choice gases we use are also particularly unfriendly to the environment.

There is, however, more than one way a substance can be forced to absorb and shed heat energy.

A new method developed by researchers from the Lawrence Berkeley National Laboratory and the University of California, Berkeley, in the US takes advantage of the way that energy is stored or released when a material changes phase, as when solid ice turns to liquid water, for example.

Raise the temperature on a block of ice, it’ll melt. What we might not see so easily is that melting absorbs heat from its surroundings, effectively cooling it.

One way to force ice to melt without needing to turn up the heat is to add a few charged particles, or ions. Putting salt on roads to prevent ice forming is a common example of this in action. The ionocaloric cycle also uses salt to change a fluid’s phase and cool its surroundings.

“The landscape of refrigerants is an unsolved problem,” says mechanical engineer Drew Lilley, from the Lawrence Berkeley National Laboratory in California. “No one has successfully developed an alternative solution that makes stuff cold, works efficiently, is safe, and doesn’t hurt the environment.”

“We think the ionocaloric cycle has the potential to meet all those goals if realized appropriately.”

The researchers modeled the theory of the ionocaloric cycle to show how it could potentially compete with, or even improve upon, the efficiency of refrigerants in use today. A current running through the system would move the ions in it, shifting the material’s melting point to change temperature.

Ionocaloric cooling
The ionocaloric cycle in action. (Jenny Nuss/Berkeley Lab)

The team also ran experiments using a salt made with iodine and sodium, to melt ethylene carbonate. This common organic solvent is also used in lithium-ion batteries, and is produced using carbon dioxide as an input. That could make the system not just GWP [global warming potential] zero, but GWP negative.

A temperature shift of 25 degrees Celsius (45 degrees Fahrenheit) was measured through the application of less than a single volt of charge in the experiment, a result that exceeds what other caloric technologies have managed to achieve so far.

“There are three things we’re trying to balance: the GWP of the refrigerant, energy efficiency, and the cost of the equipment itself,” says mechanical engineer Ravi Prasher, from the Lawrence Berkeley National Laboratory.

“From the first try, our data looks very promising on all three of these aspects.”

The vapor compression systems currently used in refrigeration processes rely on gases that have high GWP, such as various hydrofluorocarbons (HFCs). Countries that signed up to the Kigali Amendment have committed to reducing the production and consumption of HFCs by at least 80 percent over the next 25 years – and ionocaloric cooling could play a major part in that.

Now, the researchers need to get the technology out of the lab and into practical systems that can be used commercially and that scale up without any issues. Eventually, these systems could be used for heating as well as cooling.

“We have this brand-new thermodynamic cycle and framework that brings together elements from different fields, and we’ve shown that it can work,” says Prasher.

“Now, it’s time for experimentation to test different combinations of materials and techniques to meet the engineering challenges.”

The research has been published in Science.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

More Life Than We Ever Realized Could Survive in The Deep Dark of The Ocean
Scientists Discover a Weird New Form of Ice That May Change How We Think About Water
The First Stars May Have Been Heavier Than 100,000 Suns
Bar Graphs Induce a Hidden Bias in Interpretation, Experiment Shows
Jupiter Overtakes Saturn as The Planet With The Most Known Moons

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • Codebreakers Have Deciphered The Lost Letters of Mary, Queen of Scots
  • Millions Are at Risk of Flooding Due to Climate Change – But Not Where You’d Think
  • Astronomers Pinpoint The Mysterious ‘Engine’ of a Super-Powerful Intergalactic Light
  • JWST Has Accidentally Detected a Tiny Asteroid ‘Hidden’ Between Mars And Jupiter
  • A Seismologist Explains The Science of The Devastating Türkiye-Syria Earthquake
  • Ancient Jurassic Predator Emerged From Ghost Ancestor, Scientists Say
  • Scientists Are Making Catfish Hybrids With Alligator DNA For Us to Eat
  • Neanderthals Hunted Giant Elephants Much Larger Than The Ones Today
  • ‘Extinct’ Coronaviruses Still Thrive in North America, Just Not in Humans
  • More Life Than We Ever Realized Could Survive in The Deep Dark of The Ocean

Space

  • Astronomers Pinpoint The Mysterious ‘Engine’ of a Super-Powerful Intergalactic Light
  • JWST Has Accidentally Detected a Tiny Asteroid ‘Hidden’ Between Mars And Jupiter
  • A Planet Almost Exactly Earth’s Size Has Been Found 72 Light-Years Away
  • NASA Rover Encounters Spectacular Metal Meteorite on Mars
  • Jupiter Overtakes Saturn as The Planet With The Most Known Moons

Physics

  • Scientists Discover a Weird New Form of Ice That May Change How We Think About Water
  • A Lost Interview With The ‘Father of The Big Bang’ Was Just Discovered
  • This Physicist Says Electrons Spin in Quantum Physics After All. Here’s Why
  • Physicists Break Record Firing a Laser Down Their University Corridor
  • Scientists Have Built a Macroscopic Tractor Beam Using Laser Light

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • Codebreakers Have Deciphered The Lost Letters of Mary, Queen of Scots
  • Millions Are at Risk of Flooding Due to Climate Change – But Not Where You’d Think
  • Astronomers Pinpoint The Mysterious ‘Engine’ of a Super-Powerful Intergalactic Light
  • JWST Has Accidentally Detected a Tiny Asteroid ‘Hidden’ Between Mars And Jupiter
  • A Seismologist Explains The Science of The Devastating Türkiye-Syria Earthquake

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.