Oni Science
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Oni Science
Your Daily Science News
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Tech

WATCH: A Dish of Brain Cells Figured Out How to Play Pong in 5 Minutes

October 12, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Pinterest
Share on LinkedIn

How many brain cells does it take to play a video game?

No, really. That’s not a joke, and there isn’t a punchline. Instead, there’s a real actual answer, thanks to a neural network system called DishBrain.

If that game is Pong, the number of brain cells is around 800,000.

While their slow-moving, one-sided strategy for digital table tennis won’t see them win any e-sports championships in the near future, it does reflect the potential in fusing living tissues with silicon technology.

frameborder=”0″ allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen>

This is the first synthetic biological intelligence experiment that shows neurons can adjust their activity to perform a specific task – and, when provided with feedback, can learn to perform that task better. It’s pretty amazing stuff, with potential applications in computing, as well as studying all sorts of brain stuff, from how drugs and medication impact brain activity to how intelligence develops in the first place.

“We have shown we can interact with living biological neurons in such a way that compels them to modify their activity, leading to something that resembles intelligence,” says neuroscientist Brett Kagan of biotech startup Cortical Labs in Australia.

DishBrain is a heady mix of neurons extracted from embryonic mice and human neurons grown from stem cells. These cells were grown on arrays of microelectrodes that could be activated to stimulate the neurons, thus providing sensory input.

Microscopy Image Of Neural Cells
Under the microscope, tagged with fluorescent markers, the neurons, axons and dendrites glow purple, red and green. (Cortical Labs)

For a game of Pong, microelectrodes on either side of the dish indicated whether the ball was to the left or right of the paddle, while the frequency of signals relayed the ball’s distance.

With just this set-up, DishBrain is capable of moving the paddle to meet the ball, but performs pretty poorly overall. In order to play the game well, the neurons need feedback.

The team developed a software to deliver critique via electrodes whenever DishBrain missed the ball. This allowed the system to improve at playing Pong, with learning observed by the researchers in as little as five minutes.

“The beautiful and pioneering aspect of this work rests on equipping the neurons with sensations – the feedback – and crucially the ability to act on their world,” says theoretical neuroscientist Karl Friston of University College London in the UK.

“Remarkably, the cultures learned how to make their world more predictable by acting upon it. This is remarkable because you cannot teach this kind of self-organization; simply because – unlike a pet – these mini brains have no sense of reward and punishment.”

A few years ago, Friston developed a theory called the free energy principle, which proposes all biological systems behave in ways that reduce the gap between what is expected and what is experienced – in other words, to make the world more predictable.

By adjusting its actions to make the world more predictable, Friston says, DishBrain is simply doing what biology does best.

“We chose Pong due to its simplicity and familiarity, but, also, it was one of the first games used in machine learning, so we wanted to recognize that,” Kagan says.

“An unpredictable stimulus was applied to the cells, and the system as a whole would reorganize its activity to better play the game and to minimize having a random response. You can also think that just playing the game, hitting the ball and getting predictable stimulation, is inherently creating more predictable environments.”

This has some really intriguing possibilities, especially in artificial intelligence and computing. The human brain, containing around 80 to 100 billion neurons, is way more powerful than any computer, and our best computers struggle to replicate it. Our best effort yet required 82,944 processors, a petabyte of main memory and 40 minutes to replicate just one second of the activity of one percent of the human brain.

If the architecture is more like that of an actual brain – perhaps even a synthetic biological system like the one developed by Kagan and colleagues – this goal may not be quite so far out of reach.

But there are other, perhaps more immediate implications.

For example, DishBrain might be able to help chemists understand the effects of various medications on the brain, to a cellular level. It might, one day, even help tailor medications to a patient’s specific biology, using neurons cultured from stem cells reverse engineered from that patient’s skin.

“The translational potential of this work is truly exciting: it means we don’t have to worry about creating ‘digital twins’ to test therapeutic interventions,” says Friston. “We now have, in principle, the ultimate biomimetic ‘sandbox’ in which to test the effects of drugs and genetic variants – a sandbox constituted by exactly the same computing (neuronal) elements found in your brain and mine.”

For now, the next step is to figure out how DishBrain’s ability to play Pong is affected by drugs and alcohol. “We’re trying to create a dose response curve with ethanol – basically get them ‘drunk’ and see if they play the game more poorly, just as when people drink,” Kagan says.

In other words, a dish of brain cells rolls into a bar…

The team’s research has been published in Neuron.

This article was originally published by Sciencealert.com. Read the original article here.

Articles You May Like

Uncanny Coincidence: Fast Radio Burst Detected After Gravitational Wave Event
The Origins of Human Empathy May Go All The Way Back to The Ocean
Radical NASA Propulsion Concept Could Reach Interstellar Space in Under 5 Years
AI Could Be Our Best Chance of Finding Life on Mars. Here’s Why.
NASA Is Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Articles

  • JWST Gives Us Our Best Look Yet at Earth-Sized Exoplanet TRAPPIST-1b
  • Surprise! ChatGPT Turns Out to Be Terrible at Wordle
  • Oldest Ichthyosaur Known to Science Discovered on Remote Arctic Island
  • Uncanny Coincidence: Fast Radio Burst Detected After Gravitational Wave Event
  • The Origins of Human Empathy May Go All The Way Back to The Ocean
  • Entire Planets Made of Dark Matter May Exist. Here’s How We Can Find Them.
  • Thousands of Mummified Ram Heads Revealed in Ancient Egyptian Temple
  • Extreme Horizons in Space Could Lure Quantum States Into Reality
  • Strange Signal From Decades Ago Hints at Hidden Oceans Orbiting Uranus
  • ‘Scientifically Interesting’ Asteroid Sailing Between Earth And The Moon Today

Space

  • JWST Gives Us Our Best Look Yet at Earth-Sized Exoplanet TRAPPIST-1b
  • Uncanny Coincidence: Fast Radio Burst Detected After Gravitational Wave Event
  • Entire Planets Made of Dark Matter May Exist. Here’s How We Can Find Them.
  • Strange Signal From Decades Ago Hints at Hidden Oceans Orbiting Uranus
  • ‘Scientifically Interesting’ Asteroid Sailing Between Earth And The Moon Today

Physics

  • Extreme Horizons in Space Could Lure Quantum States Into Reality
  • Physicists Have Manipulated ‘Quantum Light’ For The First Time, in a Huge Breakthrough
  • ‘Ghost Particles’: Scientists Finally Detect Neutrinos in Particle Collider
  • We’re Either Suspiciously Lucky, or There Really Are Many Universes Out There
  • Blueprint of a Quantum Wormhole Teleporter Could Point to Deeper Physics

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • September 2017
  • August 2017
  • March 2017
  • November 2016

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Recent Posts

  • JWST Gives Us Our Best Look Yet at Earth-Sized Exoplanet TRAPPIST-1b
  • Surprise! ChatGPT Turns Out to Be Terrible at Wordle
  • Oldest Ichthyosaur Known to Science Discovered on Remote Arctic Island
  • Uncanny Coincidence: Fast Radio Burst Detected After Gravitational Wave Event
  • The Origins of Human Empathy May Go All The Way Back to The Ocean

Copyright © 2023 by Oni Science. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.